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1.Introduction
One of the major issues that humanity is facing today is

related to energy crises. Currently, incineration of fossil

fuel is the major resource to meet the energy demands.

However, this approach is not an environment friendly

approach as it results in emission of harmful greenhouse

gases and many other environmental perturbations [1].

Hence, there is a need of some alternative of already

existing energy resources i-e electric batteries, fuel cell etc.

The need of recharging, short life span due to charging and

discharging cycles, draining dead batteries in open

atmosphere, cost of electric batteries limit their use. As far

as fuel cell is concerned, it is clean, reliable, efficient,

sustainable, eco-friendly source of energy. Unlike batteries

are thrown away, fuel cell is able to perform its function as

long as fuel is provided. In hydrogen fuel cell (HFCs)
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electricity up to 39.39 kWh/Kg-1 can be produced which

super cede the energy density of many batteries [2].

Combustion engine convert fuel’s chemical energy into

mechanical energy which when pass through generator

convert into electrical energy. In fuel cell chemical energy

is converted into electrical energy precisely but without

any harmful gas emission. The efficiency of fuel cell is

high almost 60-65% in comparison to combustion engine

i.e. 25-30%. In comparison to HFCs, DEFCs are more

preferable because of less toxicity of ethanol, its immense

production from biomass fermentation [3], its energy

density is high 6.34 kWhL-1 as compared to hydrogen 0.53

kWhL-1 [4]. DAFCs use alcohol as a fuel i-e ethanol,

methanol etc. Combinely, AFCs (Alkaline fuel cells) have

higher current density, low corrosion rate, low cost [5]. The

energy density of ethanol is very less (24 MJdm-3) as

compared to gasoline (34.2 MJdm-3). However, efficiency

factor of ethanol can be mitigated by its low cost and

efficient production from biomass fermentation as

compared to gasoline[6]. When Platinum or palladium is

used as a catalyst for both the electrodes in fuel cell, its

efficiency is very high. However, platinum is a very

expensive metal and according to DOE 56% cost of fuel

cell is just because of platinum based catalyst

[7] .Numerous studies have been done by researchers to

find some catalyst that is less expensive than platinum but

its efficiency should be comparative to it [8]. In this

context bimetallic and trimetallic oxides have shown better

activity.

In present work, considering platinum free approach

Bimetallic Iron Ferrite (BMIF) material or Cobalt Zinc

Iron Ferrite material has been tested for both EOR and

MOR. For EOR it has shown good activity comparative

to platinum however not a very good catalyst considering

MOR. The catalytic activity is determined using

parameters i.e. Tafel slope value, onset potential, current

density and mass activity.

2. Chemicals and methods:

2.1. Synthesis of catalyst:

Bimetallic Iron Ferrite (BMIF) or Cobalt zinc ferrite

(CoZnFe2O4) particles were prepared using sol-Gel

Combustion methodology. The reactants used were Fe

(NO3)3.9H2O, Z(NO3)3.6H2O, Co(NO3)3.6H2O. The

concentration and amount of these reactants required is

given in (Table 1).

All the above solutions are mixed in a proper stoichiometric

amount followed by stirring for about half an hour and heating

at 100oC until a dark viscous gel like thick liquid is formed.

This viscous liquid is then kept in furnace to further raise the

temperature up to 440oC for about half an hour. At this point,

complete ignition of gel occurred. Temperature was further

raised up to 800oC for 2hrs and now proper incorporation of

transition metals inside spinel ferrite crystalline structure takes

place [9]. After that, burnt gel was ground into fine powder

using pestle and mortar. Washing of prepared material was

done using ethanol and water. Finally, the drying of product

takes place at 100oC in oven and then it was kept in dry place to

study its electrochemical properties.

2.2. Catalyst Ink preparation:

After the synthesis of catalyst, in order to check its

electrochemical activity we have to prepare the working

electrode. First of all, we have prepared slurry or ink

comprising Nafion membrane (as a binder), (isopropanol

and ethanol 1:3) as a solvent, CoZnFe2O4 as a catalyst. The

ratio among these three components is 1:1:1000 respectively

[10]. After sonication for about 15-20 minutes a

homogenous slurry will be formed. An ink drop was pasted

on glassy carbon electrode (geometric surface area 0.07 cm-2)

followed by drying in open air. After complete drying,

working electrode is now ready for electrochemical analysis.

3. Catalyst character ization:

3.1: SEM:

Fig 1 (A, B) shows particles are neither exactly spherical nor

of any other definite shape when observed at scale of 1µm

and 5µm. The relative distribution curves shows that the

particle’s size lies in the range of 0.08 to 0.3±0.02 µm.
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Table 1. List of Chemicals for BMIF Synthesis

Sr .
No

Chemical Concentration (M) Molecular Formula % Pur ity

1 Iron(III) nitrate Nano hydrate 2 Fe(NO3)3.9H2O 98

2 Cobaltous (II) nitrate
Hex hydrate

0.5 Co(NO3)2.6H2O 98

3 Zinc(II) nitrate Hex hydrate 0.5 Zn(NO3)2.6H2O 95

4 Urea 6.67 NH2CONH2 98

Table 2: Current density of different anodic catalyst reported in literature [11].

Anodic catalyst Electrolyte Current density(mAcm -2)

Pd/G 1M KOH+1M Ethanol 0.8

Pd-Sn/C same 1.4

Pd-Sn-Ni/C same 2.25

Pt-vulcan 0.1M NaOH+1M Ethanol 0.5

Pt3-Sn/vulcan same 1

Pt-Sn Vulcan same 2.25

Pd/MnO2/vulcan 0.2M KOH +1M Ethanol 0.91

Pd-Ni/MnO2/vulcan same 1.46

Pd-Ni-Fe/MnO2/vulcan same 3.03

Our material 0.5M NaOH+1M Ethanol 1.1757

PdCo/C Same 48

Pd/C (commercial) 27

.
However, when analyzed at more magnified 5 µm scale,

particles were found to be of spherical shape but they were

in agglomerated state due to magnetic interactions among

them [12, 13]. As far as surface is concerned, it does not

appear homogenous due to the polydisperse system (non-

uniform size distribution). At some areas, pores are also

observed. This might be due to liberation of gases at high

temperature which have loosen the crystalline structure a

little bit [14].

3.2. XRD:

Our sample material have shown cubic spinel structure

(Figure 2) in accordance with literature reported data [15].
Spineal structure has been confirmed through the strongest

or the intense peak obtained for (311) plane at

2� = 35�[16, 17]. No extra peaks were observed in XRD
plot showing high purity of our sample material [18].

Crystallite size has also been calculated using sherrer

equation (0.315 µm), which is in accordance with result

obtained from SEM analysis (0.08-0.3 µm). A crystallite

consist of many particles, hence crystallite size is greater

than particle size [19].

3.3. FTIR:

FTIR spectra (Figure 3, 1.4) have shown how the cations are

scattered in octahedral and tetrahedral sites? Spectra existing

in finger print region (400 to 600 cm-1) due to metal-oxygen

stretching vibrations has confirmed the spinel structure of

BMIF [20].The bands at high frequency are attributed to

stretching vibration of (Mtet-O) while at low frequency is due

to stretching vibration of (Moct-O) [21]. As the bond length

of tetrahedral complexes is shorter and hence their mode of

vibration is high as compared to octahedral complexes

[12].The weak broader bands appear near 3400 cm-1 and



Journal of Chemistry and Environment

www.jspae.com
4

peaks near 1600 cm-1 (Fig1.3) is due to adsorbed moisture

on ferrite surface[22, 23]. H-O-H bending vibration of

water show band near 3400 cm-1. The peak near 1600 cm-1

is due to OH- stretching vibrations [24, 25].

We have concluded from FTIR spectrum of BMIF that

before and after electrochemical analysis (Figure 4), spinel

structure remains persistent. All peaks are obtained in the

same frequency range (400-600cm-1) even after

electrochemical analysis confirming the high structural

stability of BMIF.

4. Electrochemical activity:

Cyclic voltammetry, linear sweep voltammetry are used to

check electrochemical properties (EOR and MOR) of

sample material.

Table 3: Mass activity of different Pd based electrocatalyst

reported in literature

Figure 1: (A) BMIF SEM images at bar scale of 1µm and

its relative distribution curve (B) BMIF SEM images at

bar scale of 5µm and its relative distribution curve

4.1. Ethanol Oxidation Reaction (EOR):

Mechanism of EOR is a dual pathway C1 and C2 pathway

[29],

C1 (complete oxidation)

CH3CH2OH → CO+CHX → CO2 + 12e−

C2 (incomplete oxidation)

CH3CH2OH → CH3COOH+ 4e−

20 30 40 50 60 70 80
In

te
ns

ity
 (a

.u
)

2θ (degree)

(220)

(311)

(400)
(511)

(440)

Figure 2: XRD plot for BMIF with maximum peak

obtained at 2�=35o
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Figure 3: FTIR spectrum of BMIF before and after

electrochemical analysis in range of 4000-400 cm-1

Metal catalyst Mass activity(mAmg-1) References

Pd/C 95 vs Hg/HgO [26]

Pd/Bi-C 279 [27]

PdCo/C 105 [26]

Pd2Ni3/C 1.71 [28]
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Figure 4: FTIR Spectrtum of BMIF before and after

electrochemical analysis in finger print region (800-400

cm-1).

At high pH (alkaline medium) there is great possibility of

C1pathway [30] as it is suggested that aldol condensation

at alkaline medium supports C1 pathway. Because the α

hydrogen in CH3 of acetaldehyde is slightly acidic, it is

more prone to be attacked by (OH-) [31]. Consequently,

C-C bond is now slightly hindered and now it is facile to

break this bond. This suggestion towards selectivity of C1

pathway is further reinforced by the fact that the

intermediates of this route i-e CHx.ads [32] and COads [33]

can easily be oxidized at low over potential in alkaline

medium as compared to acidic one. We will determine the

EOR catalytic activity of our sample material on the basis

of following parameters.

Current density:

The current density calculated from the (Figure 5) at 1.5

V is (0.0823/0.07=1.1757 mAcm-2).when we compared

the current density for different anodic catalyst reported

in literature , this value is found to be in accordance as

shown in (Table 2).
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Figure 5: CV for BMIF at scan rate of 50 mVs-1

Mass activity:

The mass activity of our material is calculated from (Figure

5) at 1.5V (0.0823/0.001=82.3 mAmg-1) and at 0.9V

(0.003517/0.001= 3.517 mAmg-1) .The mass activity value

reported in literature for other noble metal based catalyst is

given in (Table1.3). The mass activity of BMIF is in good

accordance with the reported values in literature for other

noble catalyst.
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Figure 6: LSV curves for BMIF at different scan rate.
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Figure 7: Tafel plot of BMIF for EOR at different scan

rate.

Onset potential:

Onset potential is the difference between equilibrium

potential and the applied potential [34]. Low value of

onset potential is an indication of efficient metal for EOR

[35, 36]. Table 5 shows the comparison of onset potential

for BMIF with other catalyst containing noble metals.

Tafel slope value:
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Figure 8: Tafel slope value of two electrocatalysts (BMIF

and

NZC, NiZnCuO) for EOR in different electrolyte.

(Figure 8 , Table 7) shows that NZC (NiZn CuO) posses

greater tafel slope value in comparison to BMIF showing its

less activity as compared to BMIF.

We have seen that (Figure 6, Table 4), with increase in scan

rate the current response increases in accordance with

Randles Sevick equation.

ip = 0.446nFACO(
nFνDo
RT

)
1
2 eq− 1

All the observations from (Figure 6) are summarized in

(Table 4).
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Table 4: Numerical data showing current density of BMIF for EOR at different scan rate

Scan rate(mVs-

1)

Onset potential(v) Over-potential(V) Current response(mA) Current density( mAcm -2)

10 0.907 1.677 0.0033 0.046

20 0.916 1.686 0.00296 0.0416

25 0.919 1.689 0.00304 0.0428

30 0.921 1.691 0.0032 0.0450

40 0.922 1.692 0.0038 0.0535

Table 5: Onset potential for EOR of some other electro catalyst reported in literature:

Sr No; Electrocatalyst Onset potential(V vs RHE) References Over-potential(V)

1 Ni-Pd/ PVA 1.27 [37] 2.04

2 Pt2.3-Ni/C 0.6 [38] 1.37

3 Ni-MnO2 1.32 [39] 2.09

4 Pt 0 [40] 0

5 Cu2O/PPy 1.45 [41] 2.22

6 Pt/MoS2 0.67 [42] 1.44

7 Pt/C 1.36 [43] 2.13

8 Pd 0.9 [44] 1.67

9 Pt-CeO2 1 [45] 1.77

10 Co-Bi@rGO 1.28 [46] 2.05

Our work 0.9 1.67

Table 6: BMIF tafel slope value at different scan rate

Scan rate (mVs-1) Tafel slope value (Vdec-1)

20 6.408± 0.10522

25 6.961±0.1182

30 6.702±0.10082

40 6.907 ±0.077

At low scan rate (Figure 7) Tafel slope value is less showing best activity of catalyst (Table 6).

Table 7: Tafel slope for BMIF and NZC from (Figure 8)

Sample material Electrolyte Tafel slope value

BMIF 0.5M NaOH+1M Ethanol 7.748 ± 0.1334

BMIF 1M NaOH+1M Ethanol 7.127 ± 0.1080

NZC same 8.465 ± 0.13128
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Table 8: comparison of BMIF EOR activity with noble metal catalyst reported in literature.

Catalyst Mass Activity (mAmg-1)[47] Tafel slope (Vdec-1)

Pt/C at 0.45 V 4 0.619 [48]

Pd/C at 0.45V 25.4 0.182-0.195 [49, 50]

Pd based catalyst - 0.12-0.17 [27, 51]

BMIF at 0.9V 3.517 6.9-7.7

BMIF at 1.5V 82.3 -

In a nutshell, BMIF is showing good mass activity comparative to Pt and Pd but at the expense of high potential. In terms of

Tafel slope value our material is showing high value comparatively.

Table 9: Numerical data from BMIF LSV for MOR at different scan rate

Scan rate

(mVs-1)

Onset potential

(v)

Over potential

(V)

Current response(mA) Current density(mAcm-2)

20 0.9153 1.725 0.003259 0.04590

30 0.91094 1.720 0.002964 0.04174

40 0.9492 1.719 0.004302 0.06059

50 0.9547 1.7647 0.004971 0.07001

4.2. Methanol oxidation reaction (MOR):

The MOR mechanism suggested is as follows[52],

CH3OH + H2O→ 6H+ + 6e− + CO2
The formal reduction potential for MOR reported in literature

is -0.81 [53].
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Figure 9: LSV curves of BMIF for MOR at different scan

rate Tafel slope value:

Smaller the Tafel slope value , greater will be the over

potential and hence catalyst under study would be poor

[54]with increasing scan rate anodic Tafel slope value and

corrosion rate also increases [55]. (Figure 10, Table 10) gives

information about Tafel slope value for MOR at different scan

rate. Low scan rate is again the best option to obtain good

activity of BMIF for MOR.

Onset potential:

Figure 9 shows LSV curves for MOR from where we can get

useful information about current density and onset potential.

BMIF has shown greater value of onset potential i-e 0.8 V

(Table 9) in comparison to Pt i-e 0.4 V (Table 11)

Mass activity:

The value of limiting current obtained at 0.9 V from (Figure 9)

is il= 0.005096 mA. The mass activity calculated is 5.095

mAmg-1.(Table 9) much less than mass activity of Pt as

mentioned in (Table 11).
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Figure 10 : BMIF Tafel slope value at different scan rate

In a nutshell, BMIF is showing good mass activity

comparative to Pt and Pd but at the expense of high potential.

In terms of Tafel slope value our material is showing high

value comparatively.

Table 10: BMIF tafel slope value for MOR at different scan

rate

Scan rate mVs-1 Tafel slope value

20 6.725 ± 0.09

30 6.880 ±0.602

40 6.980 ±0.078

50 7.119 ±0.07

Table 11: comparison of BMIF MOR activity with noble
metal catalyst reported in literature

Catalyst Tafel

slope

(Vdec-

1)

Onset

potential

(V)

Mass

activity(mAmg-1)

Pt/C 0.166[5

6]

0.448[57] 56[58]

BMIF 6.7-

7.11

0.8 5.095

BMIF haven’t shown good activity for MOR in any parameter

(Table 11).

5. Conclusion:

We have determined the catalytic activity of BMIF for EOR

and MOR on the basis of different parameters. Spinel structure

of BMIF was analyzed from XRD and retainment of this

crystalline structure even after electrochemical analysis was

confirmed through FTIR analysis. In terms of EOR, Onset

potential and mass activity values were found in accordance

with the one reported for noble metal catalyst reported in

literature. However, BMIF cannot be suggested as good

catalyst for MOR in comparison to noble metal catalyst.

6. Future perspective:

 Effect of temperature on activity of catalyst

 Combination of BMIF with any carbonaceous material

might enhance its activity for MOR

 Poisoning of electrode due to oxides of carbon

produced as a result of EOR and MOR needs further

study.
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