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1. Introduction
Natural gas utilization as a vital fossil fuel in various

human activities can lead to the presence of heavy metal

contaminants, such as Hg and As, which present a

substantial threat to both the environment and human

health, which occur naturally [1, 2]. Among these

contaminants, the highly volatile form of mercury (Hg0)

is of particular concern due to its volatility, neurotoxicity,

tendency to bioaccumulate, and persistent nature. “The

World Health Organization (WHO)” recognizes the

significance of safeguarding organisms from the potential

harm posed by it [3]. It has an unpleasant economic effect

through natural gas processing plants [4, 5], even a small

amount of mercury can cause significant damage to the

heat exchangers with aluminum structure that are

commonly utilized in cryogenic temperature processes

used in LNG plants or naphtha crackers for olefin

production [5, 6]. Also, mercury released to the

environment through combustion of natural gas is

constantly increasing from different sources in line with the

Global Mercury Assessment of UNEP [7]. There are three

types of mercury: elemental Hg0, oxidized Hg2+, and

particulate Hgp [8–11], Among these, elemental mercury

(Hg0) is the most common form found in natural gas [5, 12].

Numerous techniques have been researched for eliminating

Hg0, such as adsorption, conventional chemical oxidation,

advanced oxidation, and catalytic oxidation, which
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encompasses photocatalytic oxidation procedures [13-18].

Mercury's oxidized forms, commonly represented as Hg2+

species, have garnered significant attention due to their

propensity to be efficiently captured by conventional

control devices. This property leads to increased

solubility in water and enhanced adsorption onto particles.

Recognizing this characteristic, our study specifically

targeted photocatalytic oxidation as a potential approach

to address the issue.

TiO2 is a widely favoured photocatalyst primarily due to

its affordability, non-toxic nature, and advantageous band

edge positions [19]. Its extensive use is attributed to its

ability to harness the energy of light and convert it into

chemical energy, thereby accelerating the reaction rate of

various chemical processes [20]. Its exceptional

properties render it an ideal choice for diverse

applications, including water purification, air pollution

control, and hydrogen production [36–38]. Additionally,

its stability and durability under harsh conditions make it

a reliable and efficient choice for industrial and

environmental applications [19].

The majority of research in the field of photocatalytic

removal of elemental mercury has primarily concentrated

on flue gases. This preference stems from the fact that

flue gases are more amenable to photocatalytic oxidation

processes compared to natural gas. This is mainly due to

the presence of components such as NOx, SO2, H2O, and

HCl in flue gases, which facilitate the photooxidation

process of Hg0 [24, 25].

The study aims to investigate the effectiveness of TiO2 as

a photocatalyst for removing elemental mercury from

natural gas under three different conditions: in the dark,

in UV light, and in UV-visible light. The experiment will

measure the removal efficiency of mercury using TiO2 in

each condition to determine which is the most effective.

This information could be useful for optimizing the

process of mercury removal in natural gas production.

The study could also contribute to a better understanding

of the mechanisms involved in photocatalytic reactions

using TiO2, and provide insights into the factors that affect

their performance.

2. Materials and Methods

2.1 Materials

TiO2 nanoparticles were produced through the sol-gel

technique using Titanium tetraisopropoxide as the starting

material, HNO3 bought from Merck and AR grade

isopropanol procured from SD’s Fine Chemicals (Pty) Ltd.

2.2 Synthesis of Catalyst

To prepare TiO2 nanoparticles, a sol-gel method was used

with 4 mL of Titanium tetraisopropoxide (TTIP) precursor

in 10 mL of isopropanol. After undergoing agitation for 30

minutes at ambient temperature, the solution was subjected

to forced hydrolysis through the addition of a solution

containing isopropanol, deionized water, and HNO3. The

mixture stirred for two hours until a homogeneous and

viscous solution was achieved. HNO3 served as an acid

catalyst to improve the hydrolysis and condensation rates

[26]. Afterward, the solution was subsequently subjected to

drying in an oven at 80°C for a duration of 2 hours,

followed by a heat treatment process at 500°C for an

additional 2 hours.

2.3 Characterization

The samples underwent characterization using various

techniques, involving X-ray diffraction (Bruker XRD),

transmission electron microscopy (JEOL 2100F TEM), and

energy-dispersive X-ray spectroscopy (EDS), Surface area

BET (NOVA2000) and UV/vis reflectance spectroscopy.

The UV-visible diffuse reflectance spectra (DRS) were

acquired using a Perkin Elmer Lambda 35 UV-visible

spectrophotometer, which was equipped with an

integrating sphere assembly. BaSO4 was used as the

reflectance standard for the measurements. K-ALPHA

instrument for X-ray photoelectron spectroscopy (XPS)

from (Thermo Fisher Scientific, USA) with

monochromatic Al K-alpha radiation were used, which

covered a range of 10 to 1350 eV. The spot size was 400

micrometers, and the pressure was maintained at 10-9 mbar.

The full spectrum pass energy was set to 200 eV, and the
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narrow spectrum was set to 50 eV.

2.4 Photocatalytic activity test

The objective of the experiment was to assess the efficacy

of TiO2 catalyst in photo-catalytically removing elemental

mercury. A quartz tube bed filled with glass beads and

photocatalyst was used for the experiment. The weight

ratio of catalyst to glass beads was 0.1:0.7g, with the

glass beads performing as support for the catalyst and

ensuring an even distribution of catalyst particles within

the bed. The bed was exposed to two different UV

wavelengths, i.e., 253.7 nm and 365 nm, as well as a dark

medium. The mercury concentration before and after the

bed was measured using a Nippon WA-4 instrument (an

atomic absorption spectroscopy technique). The

experiment involved the preparation of the catalysts by

packing them with glass beads in the quartz tube bed. To

determine the least effective temperature for catalyst

activity, the performance of TiO2 was assessed at three

different media conditions: Dark, UV, and UV-visible.

The activity of elemental mercury removal was evaluated

using the initial and final concentration of mercury

passing through the catalyst bed using equation 1.

(1)

The formula provided is used to calculate the dynamic

Hg0 adsorption capacity, where q is in units of μg·g−1. Q

represents the total gas flow rate, measured in m3·min−1; t

represents the time elapsed, measured in minutes; m

represents the mass of sorbent used, measured in grams;

Cin represents the real-time concentration of Hg0 at the

inlet, measured in μg·m−3; and Cout represents the real-

time concentration of Hg0 at the outlet, also measured in

μg·m−3.

3. Results and discussion
The results obtained from the physico-chemical

characterization techniques are now being discussed.

3.1 X-ray diffraction analysis

X-ray diffraction (XRD) is a valuable technique for

analyzing the crystal structure and average size of

nanoparticles. It provides insights into the atomic

arrangement within a sample and captures the diffraction

pattern resulting from the interaction of X-rays with the

sample. The pattern of TiO2 nanoparticles (XRD) was

analyzed to determine its crystal structure.

Figure1: Photocatalytic system diagram for Elemental

mercury removal.

The results showed that the nanoparticles have the

crystalline features of anatase, as indicated by the peaks in

the pattern matching to the anatase phase at specific 2θ

values 25.43o, 38o, 48.01o, 54.08o, 55.36o, and 62.78o. The

observed peaks in the X-ray diffraction pattern are

identified by their corresponding hkl values enclosed in

parentheses, such as (1 0 1), (1 1 2), (2 0 0), (1 0 5), (2 1 1),

and (2 0 4). The main diffraction peak in the anatase XRD

pattern is at 2θ = 25.43°, matches with the (1 0 1) plane.

The size of the nanoparticles was determined by

calculating the full width at half maximum (FWHM) of the

(1 0 1) diffraction peak and applying Scherrer's equation

(number 2). The equation establishes a correlation between

the average crystallite size (D), the wavelength of the X-

ray source (λ), the FWHM of the diffraction peak (β), and

the diffraction angle (θ). The result provides an average

size estimate for the nanoparticles, but does not account for

the size distribution or shape.

D = Kλ/β cosθ (2)

In the equation, D represents the crystal size of the sample,
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Figure 2: XRD patterns of undoped TiO2 catalyst λ

denotes the wavelength of the X-ray (1.54056 Å), β

corresponds to the full width at half maximum (FWHM) of

the diffraction peak in radians, K is a coefficient (0.89),

and θ represents the diffraction angle at the peak maximum.

The crystal size of TiO2 is found to be 20.31 nm.

3.2 HR-TEM characterization and EDAX spectrum

The TEM image shown in figure 3a reveals the shape,

structure, and range of sizes of the synthesized TiO2

nanoparticles. The irregular spherical shape observed

suggests that the nanoparticles are not perfectly round, but

instead have variations in shape, likely due to the synthesis

method used. The small particle size observed between 15

to 35 nm indicates that the nanoparticles are relatively

small, which is important for achieving high surface area

and reactivity in photocatalysis. The uniform size

distribution observed suggests that the synthesis method

used is efficient and reproducible.

The EDAX spectrum shown in figure 3b provides

elemental information about the sample, indicating the

presence of titanium and oxygen, which is expected for

TiO2. This further confirms the successful synthesis of

TiO2 nanoparticles. Overall, the combination of TEM and

EDAX analysis provides important evidence about the

morphology and size distribution of the synthesized TiO2

nanoparticles.

3.3 UV–visible diffuse reflectance spectra (DRS)

The (UV-vis DRS) was used to examine the optical

properties of the samples. Results, shown in Figure 4a,

indicate that TiO2 exhibits a pronounced absorption band in

the ultraviolet (UV) region, ranging from 200 to 380 nm.

However, there is little absorption in the visible light region

(above 400 nm). This is mainly due to electrons transmission

from valence to conduction band of TiO2. Nevertheless, it is

evident that the TiO2 samples exhibit a significant absence

of absorption in the visible light region, which extends

beyond 400 nm [27].

Figure 3: Images of a) TEM and b) EDAX Spectra of TiO2.

To estimate the band gap energy (Eg) of the samples, the

Kubelka-Munk equation (3) was used to determine band gap

energy (Eg) and the equation assumes an infinitely thick

sample, disregarding the effects of sample thickness and

holder on reflectance (R) [28].

(3)
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where BaSO4 was used as the reference material for white

light. The equation involves two coefficients, K and S, and

the remission or K-M function, F(R∞), where R∞ is the final

reflectance, obtained by dividing the sample reflectance by

the reference reflectance. The wavelength was exchanged

to electron volts (eV) by dividing 1240 by the wavelength.

R∞ is the square root of the product of energy and R. (Eg)

was obtained from the slope of the F vs R∞ plot of the

prepared TiO2 as shown in Figure 4b was determined to be

3.3 eV [28].

Figure 4: a) UV–Vis-DRS and b) the band gap energy of
TiO2.

3.4 BET Characterization

A Type IV isotherm is typically observed in mesoporous

materials and is commonly associated with materials that

possess slit-shaped or cylindrical pores. The hysteresis loop

indicates the presence of mesopores, which are formed

when the particles that make up the material agglomerate

during synthesis. The particles form voids or spaces

between them, which are the meso-pores. The shape of the

hysteresis loop gives information regarding the size and

shape of the meso-pores. In the case of H3 loop, it suggests

the observed hysteresis loop suggests the existence of slit-

shaped pores and/or panel-shaped particles, which means

that the pores have a long and narrow shape.

The surface area of TiO2, determined using the BET

method, is 43.034 m2/g, which indicates that TiO2 has a

relatively low surface area. However, the presence of

meso-pores in the material suggests that it may have good

accessibility for reactants and products, which is beneficial

for catalytic applications. The pore size distribution

analysis revealed that TiO2 exhibits a range of pore sizes

from 4 to 9 nm, an average pore diameter (3.650 nm) and a

pore volume (0.098 cc/g). These findings confirm the

mesoporous nature of the surface pores in TiO2 [29, 30]
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Figure 5: N2-adsorption–desorption isotherm and Pore Size

distributions of TiO2.

As shown in figure 5. Where, in this type of adsorption

isotherm, as the relative pressure increases, both the

adsorption volume and the adsorption rate show a

corresponding increase. Overall, the presence of a Type IV

isotherm and the analysis of pore size distribution suggest

that the TiO2 material exhibits a mesoporous structure

characterized by slit-shaped or cylindrical pores. Although it

has a relatively low surface area, it offers favourable

accessibility for reactants and products. These properties

indicate its potential usefulness in catalytic applications.

3.5 XPS

XPS is commonly used, as shown in Figure 6, to investigate

the chemical bonding and electronic structure of metal

oxides, including TiO2. Specifically, the Ti2p and O1s

spectra were examined to gain insights into the bonding

characteristics. Based on the provided data, 458.64 eV and

464.34 eV are the binding energies of Ti2P peaks that are

recognized to titanium oxide lattice, corresponding to the

binding energy of highest oxidation state of Ti atoms in TiO2

nanoparticles (Ti4+ ions). TiO2 nanoparticles did not reveal

any peaks associated with reduced titanium Ti3+, indicating
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Figure 6: XPS spectral of TiO2 a) Ti2p and b) O1s spectra.

Overall, the XPS analysis suggests that the studied TiO2 nanoparticles are of high purity and possess a well-defined

crystalline structure. These characteristics make them suitable for potential applications in various fields, including

photocatalysis, energy storage, and biomedical engineering.

Figure 7: Break through curves of Hg0 photo-oxidation and adsorption over TiO2 in a) Dark, b) UV light and c) UV-visible

light.

Figure 8: Impact of light source on the mercury removal efficiency of TiO2.
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the absence of defects in the material [31]. The O1s

spectrum reveals two distinct peaks. The peak observed at

a lower binding energy of approximately 530 eV is

associated with lattice oxygen atoms (O2-), indicating their

presence within the TiO2 structure. On the other hand, the

peak observed at a higher binding energy of approximately

532 eV can be attributed to surface hydroxyl groups (OH-)

or adsorbed water molecules. This information provides

insights into the chemical environment and surface

properties of the TiO2 nanoparticles, highlighting the

presence of both oxygen species within the material [32].

3.6 Photo-Catalytic Activity

The experimental setup for evaluating the photocatalytic

activity of TiO2 involved the passage of a gas stream

containing elemental mercury through a quartz tube filled

with the catalyst material. The concentration of elemental

mercury was then measured after it passed through the

catalyst. The experiments were conducted under various

conditions, including darkness, UV light, and UV-visible

light. The removal capacity of TiO2 was found to be 20.894

µg. g-1 in 12 hours in the dark shown in figure 7a, 25.913 µg.

g-1 in 20 hours under UV-visible light shown in figure 7c,

and 31.746 µg. g-1 in 27 hours under UV light displayed in

figure 7b.

As shown in Figure 7b, the higher removal capacity under

UV light can be explained by the movement of

photoelectrons from the valence band to the conduction band

of TiO2, producing photo-generated electrons and holes [33].

This process generates highly reactive species, for example

hydroxyl radicals, that have the ability to oxidize Hg0 to

Hg2+. The Hg2+ ions that are formed can readily adsorb onto

the surface of the TiO2 particles, effectively removing them

from the gas stream as shown in figure 8.

Changing from a UV lamp (253.7 nm) to a UV-visible lamp

(365 nm) alters the emitted light wavelength and energy.

The lower energy of the UV-visible lamp leads to a reduced

capacity for Hg0 removal compared to the UV lamp. This is

attributed to insufficient generation of electrons and holes

for efficient Hg0 photo-oxidation [34].

Table 1 The Brunauer–Emmett–Teller (BET) surface area result.

Table 2: Capacity of Hg0 removal over TiO2 in µg/g.

Radiation Q (Adsorption)

Dark 20.89

UV 31.74

UV-visible 25.91

4. CONCLUSION
The study aimed to investigate the photo-catalytic activity

of TiO2 in the removal of elemental mercury from a gas

stream under various light conditions. The results showed

that TiO2 exhibited higher removal capacity under UV light

31.74 µg/g compared to UV-visible 25.91 µg/g and dark

20.89 µg/g conditions, owing to the presence of highly

reactive species produced during the photocatalytic process

Sample Pore volume (cm3.g−1)

Average pore size

(nm) SBET (m2. g−1)

TiO2
0.098 3.650 43.034
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leads to the oxidation of elemental mercury (Hg0) to Hg2+.

This highlights the potential of photocatalysts such as TiO2

as an eco-friendly and economical solution for effectively

removing elemental mercury from natural gas. However,

further research is needed to optimize the photo-catalytic

performance of TiO2 and to develop effective methods for

scaling up the process of industrial applications. Also, the

efficiency of the photo-catalytic reaction is significantly

influenced by the energy emitted by the light source

employed in the process. Hence, selecting a light source

that can generate an adequate amount of photo-generated

electrons and holes is essential for ensuring efficient photo-

catalytic reactions.
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