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1. Introduction

Abstract
The scientific machine learning (SciML) field has introduced a new class of models called

physics-informed neural networks (PINNs). These models incorporate domain-specific
knowledge as soft constraints on a loss function and use machine learning techniques to train
the model. Although PINN models have shown promising results for simple problems, they
are prone to failure when moderate level of complexities are added to the problems. We
demonstrate that the existing baseline models, in particular PINN and evolutionary sampling
(Evo), are unable to capture the solution to differential equations with convection, reaction,
and diffusion operators when the imposed initial condition is non-trivial. We then propose a
promising solution to address these types of failure modes. This approach involves coupling
Curriculum learning with the baseline models, where the network first trains on PDEs with
simple initial conditions and is progressively exposed to more complex initial conditions. Our
results show that we can reduce the error by 1 — 2 orders of magnitude with our proposed
method compared to regular PINN and Evo.

Keywords: Scientific machine learning PINN, soft-regularization, multiphysics modeling,

chemical engineering PDEs,

Partial differential equations (PDEs) are frequently adopted to
explain various occurrences in realms of science and
engineering, generally founded on fundamental laws such as
the conservation of mass or energy. Typically, finding
analytical solutions to these PDEs for many real-world settings
is not trivial and, in some cases, not feasible. Many
conventional approaches have been proposed and studied
throughout years ,e.g., finite element methods (FEM) [1],
Gradient Discretization method [2], Spectral method [3], etc.
to approximate the solution to PDEs numerically. However,
these solutions can be computationally expensive since they
involve discretizing the problem domain into a grid and
updating the solution at each grid point. This can require many
calculations and iterations, especially for complex problems

such as turbulence simulations [4]. For this reason, as well as

www.jspae.com

the availability enormous data in scientific and engineering
domains, there has been an increasing interest in developing
machine learning (ML)/Deep Learning (DP) methods to solve
complex partial differential equations or complement
numerical solutions. Thus, the area of Scientific Machine
Learning (SciML) has emerged, integrating traditional
scientific models based on differential equations with data-
driven ML techniques, such as neural network training.

One of these methods is the so-called physics-informed neural
networks (PINNS) [5-9]. The basic idea of PINNSs for solving a
forward PDE is to train a neural network to minimize errors
with respect to the solution provided at initial/boundary points
of a spatiotemporal domain, as well as the PDE residuals
observed over a sample of interior points, referred to as

collocation points. Due to the capability of PINNs to

98


https://doi.org/10.56946/jce.v3i1.345

Journal of Chemistry and Environment

incorporate physical laws and their ability to provide a flexible
structure for the solution PDEs, they have been extensively
utilized for the multiphysics modeling of systems in the field
of chemical engineering. For example, PINNs have been
adopted to model the systems related to heat transfer [10-12],
compressible and incompressible flows [13-18], convection,
reaction, and advection-diffusion systems [19-25]. The
applications of the PINN method have also been extended to
study of environmental and materials engineering systems,
such as, mitigation of carbon emissions [26-29], and prediction
of materials properties [30-32].

Despite the advantages PINNs offer, several recent studies
show that training PINNs can be quite challenging for
complicated systems [33-36]. In general, PINNs try to
leverage the power of deep neural networks to learn the
behavior of complex systems while respecting the underlying
physical laws. This is achieved by incorporating the governing
equations or physical laws as a soft constraint on the loss
function, that is then minimized using ML techniques.
However, solving the optimization problem may not be
straightforward as the imposed physical term in the loss
function often involves nonlinearities that cause the loss
function to be ill-conditioned [37-39]. Several works propose
novel methods to tackle the challenges of training PINNs [40-
42]. One early work identifies a mode of failure of PINNs due
to the existence of unbalanced gradients during training and
proposes an adaptive model that utilizes gradient statistics to
assign appropriate weights to different terms in the PINNs
composite loss function [43]. Karishnapriyan et al. [33]
describes curriculum regularization and sequence-to-sequence
(seq2seq) learning as two promising solutions to address
failure modes associated with large PDE coefficients. The
importance of sampling strategies on the performance of
PINNs has been the focus of many researchers. Subramanian
et al. [35] argues that the location of collocation points greatly
influences the trainability of PINNs, motivating the
development of an adaptive collocation scheme that
progressively accumulates more collocation points around

areas where the model yields higher errors. In another recent
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line of work [43], it was shown that the PINN’s performance
depends on the successful propagation of solution for
boundary/initial points to the interior points. To mitigate the
“propagation failure” they proposed the so-called evolutionary
sampling (Evo) strategy, where collocation points evolve over
training iterations to prioritize high-density regions. In contrast,
the work of Wang et al. [44] demonstrates the rapid transition
in the transition layer as the cause of failure and introduces a
curriculum-based approach that encourages neural networks to
prioritize the learning on easier non-layer regions.

In all the aforementioned literature, the initial conditions are
assumed to be fixed during training and PINN has to be
retrained for problems with different initial conditions.
Conventional methods for handling the complex initial
conditions face significant challenges, as they typically require
a fine resolution to capture the steep gradients. In such cases,
the traditional methods often lead to extensive computational
costs and numerical instabilities. For example, in the coating
process of semiconductors and MEMS devices, the final
thickness of resist film is predicted using numerical
simulations based on the governing equations of Liquid film
flows [45, 46]. These problems are highly sensitive to the
initial condition and performing multiple simulations for
different initial conditions is not cost-effective. Problems
related to fluid dynamics and heat transfer, such as high-speed
aerodynamic flows [47], biomedical flows [48], and estimation
of air pollution in a spatiotemporal domain [49], are mostly
modeled using convection, diffusion, and reaction PDEs.
Changing the initial condition when training PINN for these
problems may lead to a significant deviation of the predicted
solution from the ground truth. Therefore, it is critical to
investigate new approaches to improve the robustness of the
model against variation in initial condition. Motivated by this,
we propose to combine the existing baseline models “PINN”
and “Evo” [43] with “Curriculum Regularization” [33],
where the neural network first trains with easier initial
conditions and progressively approaches the target initial

condition, which could be hard to optimize from the beginning.

2. Methods
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The formulation of PINNS starts with constructing a neural
network f'y (X, t) to deduce the solution u of a non-linear

partial differential equation [43]:

u, +N [ul=0,xeX, tel0T] ulx 0 =h(x), x
€X,; u(x,t) =g(x,t), €t[0,T], x
€ JX

Here, JV, is non-linear spatial operator, X and t denotes space

and time, respectively, X is boundary of spatial domain, and
T is the time horizon. h(x) is the initial condition and
gd(x, t) is the boundary condition. To solve the PDE, we first

need to compute the residual function Rg(x,t) and the

corresponding loss function C. (@) on a set of collocation
points {X,, L, }f\i s sampled from a uniformly from the entire

spatio-temporal domain (Q =X x [0, T]).

d
Ro(x, 1) =Efg(xz t) + N, [fe(x, )], ()
7 N
C.(0) =—73 [Ry (X, t) F. (@)
Nz
where N is the number of collocation points. PINNs

approximate the solution of given PDE by minimizing the

overall mean-squared losses consists of C(0) =A.C, (0) +
A C;(0) +A,.Cp.(0). The subscripts 7", “ic”, and
"bc " corresponds to the residual, initial condition, and

boundary condition, respectively. The hyperparameter A
signifies the importance of each loss term on the overall loss
function. Please note that the main complication in training

PINNs arise from the existence of the differential operator in

C(0), which causes the loss function to be ill-conditioned.
This is very different from norm based L; and L:
regularizations where the regularization operator corresponds
to a simple convex function.

2.1. Convection System

We consider a one-dimensional convection problem with

the following governing equation
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eX, tel[0T]. 3
o5t o X [0, T] 3)

where B is the convection coefficient. The initial and
periodic boundary conditions are as follows:

h(x) =sin(ax +km),

u(o,t)y =uZm,t).

“)

a is the rate of change of the function and K is the phase.

The general loss function can be obtained as follow:

1N ~
CO) == [A, (u—h(x))?
N

u au ()
A (— 72
* r(at +Bax)

# A, @(0,t) — u(2m, t))?].

where u = f 5 (x, t) presents the neural network’s output.

2.2. Reaction-Diffusion System
The one-dimensional reaction-diffusion problem can be

described using the following governing equation:

——V—u—pu(l—u)=0, xeX, t
X

(6

€ (0,T]
where > 0 and p are the diffusion and reaction coefficients,
respectively. We consider Gaussian distribution for the initial

condition and a periodic boundary condition:

1x-m,,

hoo =e Z i, ™
u(o,t) =u2m,t).

Here, % (= 0) is the standard deviation and 1 is a constant

used to scale 0. The overall loss function for this problem is

given as:

1N -
CO) == [, @~ h(x))
Ni=1

+ A (a_{l_ya_z{l
"ot ax?

+ 4, (0, 1) — u(2m, 1) )],

—pu(l-wy?  ®
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Table 1. Hyperparameters applied in experiments on different PDE system.

PDE Method AL/A /Ay, Ir.scheduler
PINN
PINN + Curriculum 1 No
Convection Evo StepLR
Evo + Curriculum 1/100/100 Rate=0.9
Steps = 5000
. . . PINN
Reaction-Diffusion PINN + Curriculum 1/100/100 No

2.3. Experiment Setup

We first perform experiments on the time-dependent
convection system using four different baselines: “PINN”,
“PINN + Curriculum”, “Evo”, and “Evo + Curriculum”. We
consider two different convection coefficients (8 =5 and B =
15) and the initial condition sin (ax + k) with & ranging
from 1 to 5 and k ranging from 0 to 0.5. We then study the
reaction-diffusion problem (v = p =3) using “PINN” and
“PINN + Curriculum” baselines. The 1) parameter in the initial
condition in equation (7) varies from 2 to 8. The neural
network architecture consists of four fully connected layers
with 50 neurons per layer and a hyperbolic tangent activation
function. For all cases, we use a periodic boundary condition
and Adam optimizer with a learning rate /r = le-3. After
training the models, we obtain the L, absolute error between
the predicted result and the analytical solution (ground truth)

as:

1IN T
Absolute error = in=0”u —ull2 ©)

where U is the exact solution and ljl is the output of

NN. The number of collocation points is kept constant at N =
1000 over the whole domain Q (1 X 1, = 512 x 256). Note
that ny and n, denotes the number of grid points in spatial and
temporal domains, respectively. Table 1 provides a list of other
hyperparameter settings for different baseline method.

3. Results and discussion
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The concept behind curriculum learning [50], inspired by
human education, is to start optimizing the problem with easier
training criterion and gradually increase the level of difficulty
over time. Curriculum learning has been shown to improve
various ML models for different applications including PINNs
for solving PDEs with large coefficients. Motivated by this, we
propose to implement Curriculum learning in predicting the
solution to problems with complex initial conditions. The main
idea is to train the base model using a simple initial condition
and progressively transition to a more difficult initial condition
after a certain number of iterations. This way, the model has
the opportunity to learn the easier constraint and construct a
solid foundation for learning the target constraint.

For the one-dimensional convection problem with an initial
condition given in Eq. 4 (sin (ax + k1)), the baseline PINN
model is trained with and without Curriculum learning for
different values of the constants in the initial condition. After
training, we measured the absolute errors between the
analytical and predicted solution using Eq. 9. Please note that
the data points associated to PINN (denoted with hollow
circles) in Figurel are obtained by running the code for 2.5 x
10* iterations for each distinct value of the specified constant
(a and k), whereas the data points associated to PINN +
Curriculum are obtained for that many iterations over the
whole range of the initial condition constant. For example, at
k =0 in Figure 1(a), PINN trains for 2.5 x 10* iterations, but
Curriculum learning trains for 5 x 103. This clearly grants an

unfair advantage to the “Vanilla” PINN model.
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Figure 1. Variation of Absolute error with initial condition parameters for “PINN” and “PINN + Curriculum” models. The PDE

is a convection problem with (a) =5, =1, (b)) B=5,k=0,(c) =5, k=0.5,and (d) p=15,k =0.
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Figure 2. Predicting the solution to a 1D convection problem using “PINN” and “PINN + Curriculum” baseline models. The

other parameters are (a) B =5, a =5 and (b) p = 15, & = 5. k = 0 for both cases
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The variation of absolute error as a function of phase angle k

for a convection system with B = 5 and & = 5 is depicted in

Figure 1(a). As one can see, the error corresponding to the

model with Curriculum learning decreases with increasing k

while the error rises for the PINN model. Although the value
of k influences the trainability of the network, its effect is not
as notable as the effect of angular frequency a. Figures 1(b) &
(c) show the trends of absolute error with & increasing from 1

to 5, when Kk = 0 & 0.5, respectively. As expected, the

Curriculum model outperforms the PINN model for complex
initial conditions (large values of a). The reason that PINN
delivers better performance for small values of & is the unfair

advantage it has over Curriculum. For example, at @ = 1,

~
Qo
N
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=
82}
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<
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10'3 1 1 1
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Ui
(c) ]
o
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t

PINN trains for 2.5 x 10% but Curriculum only trains for 5 x
10%; hence, obtaining lower error for PINN. The predicted
solutions of these models as well as the exact solution when 8
=5, a =5, and k = 0 are reported in Figure 2(a). It can be
seen that, unlike PINN, Curriculum method successfully
captures the solution on the entire spatiotemporal domain. To
test the robustness of our proposed model, we even add further
complexity to the problem by increasing the convection
strength to B = 15. Similar to the previous case, Curriculum
learning notably improves the performance as the absolute

error drops by around 2 orders of magnitude for intermediate

values of @ and 1 order of magnitude for & =5, see Figure

1(d).
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00 02 04 06 08 1.0

t

(d)

(3]

0

00 02 04 06 08 1.0

Figure 3. (a) Variation of Absolute error with initial condition parameters. (b) The exact solution and predicted solution using (c)

“Evo”, and (d) “Evo + Curriculum” baseline models to a 1D reaction-diffusion problem with » = p =3 and n = 8.
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The visualizations of the predicted solutions in Figure 2(b)
show that the “Vanilla” PINN model clearly fails at learning
the solution; however, combining PINN and Curriculum
learning results in an accurate prediction.

We next look at a one-dimensional reaction-diffusion flow
with a Gaussian initial condition, see Eq. 7. Here, we consider
four different values for 1) ranging from 2 to 8. In general, as 1]
increases the diffusivity of the flow rises, making the problem
more difficult to learn. The variation of absolute error with n
is illustrated in Figure 3(a) for a case with » = p = 3. One can
clearly see that at the extreme case 1 = 8, the Curriculum
learning lowers the absolute error of PINN from 1.96 x 10! to
8.94 x 1073, improving it by almost 2 orders of magnitude. We
also show the predicted solutions and the ground truth solution
obtained using analytical methods in Figures 3(b) — (d). It is
obvious that the PINN model is uncapable of predicting the

reaction or the diffusion components. However, by first

(a)
10"} F AR
[ i
[=]
=)
83
3
=
S
8 o
< =
4 —&—Evo + Curriculum
10-3 1
1 2 3 4 5
(8
(©)
6 1
4_
® 0
2- ‘
0+ -1

00 02 04 06 08 1.0
t

exposing the network to the easier problem (1 = 2) and

gradually increasing 1), we were able to capture the solution in
the whole domain.

Inspired by algorithms used for biological evolution, this
iterative sampling strategy was developed to address the
propagation failure of collocation points when solving a PDE
having high residuals in very narrow regions. In this method,
we first generate collocation points through a uniform
distribution. Then, throughout each subsequent iteration, we
retain collocation points whose absolute value of its PDE
residual is greater than a predefined threshold and resample the
remainder points from a uniform distribution. We finally
merge the resampled population with the retained population
to create the population for the next iteration. The main idea
behind Evo sampling is to include more collocation points
from high PDE residual regions to embolden the

representation of these regions in the overall residual loss.

0
-1

00 02 04 06 08 1.0

t
(d)
6 7 1
4
><: 0
2

00 02 04 06 08 10
t

Figure 4. (a) Variation of Absolute error with initial condition parameters. (b) The exact solution and predicted solution using (c)
“Evo”, and (d) “Evo + Curriculum” baseline models to a 1D convection problem with 8 =15, a =5, k = 0.
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Here, we again consider a one-dimensional convection

problem with 8 =15 and k = 0. We examined this scheme by
utilizing the identical NN architecture as before. Compared to
PINNs, Evo sampling methods require a higher number of
iterations to converge, therefore, we trained the model for 10°
epochs (four times the number of epochs for the PINN method).
Similar to the previous section, we give an advantage to the
Evo method over Evo + Curriculum method in terms of
number of iterations. Figure 4(a) shows that employing

Curriculum learning on top of Evo sampling causes the

absolute error to drop for larger values of angular frequency a.
Moreover, the exact and predicted solutions are depicted in
Figures 4(b) — (d). We observe that Evo + Curriculum learning
method, unlike Evo sampling, successfully captures the
solution in the entire domain. Comparing PINN + Curriculum
and Evo + Curriculum methods, we see that the latter produces
slightly more accurate results, however, it should be noted that
this comparison is biased in favor of Evo + Curriculum method
since the total number of iterations for this method is
considerably higher. In general, Evo is proven to outperform
PINN when trained for a relatively high number of epochs,

especially in the case of PDEs with very large coefficients (e.g.,
convection equation with 8 > 30)
4. Conclusion

SciML models, more specifically Physics-informed neural
networks, present an exciting opportunity to extend the use of
ML techniques to tackle a variety of scientific and engineering
problems. However, incorporating ML approaches with PDE-
based constraints served as a soft regularization term can result
in failure modes that prevent the learning of fundamental
physics governing a problem. We studied one-dimensional
convection and reaction-diffusion problems and showed that
the “Vanilla” PINN and Evo sampling models are unable to
predict the solutions to these problems when we impose a non-
trivial initial condition. We proposed implementing
Curriculum learning where the baseline model trains on simple
initial conditions before being exposed to the complex target
initial condition. We showed this approach lowers the absolute

error by 1 — 2 orders of magnitude and can successfully

www.jspae.com

capture the solution to the PDEs. Addressing the limitations
associated with SciML models will be crucial if we hope to
build a closer integration between scientific theories and
Machine Learning formulations.
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