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1. Introduction
Partial differential equations (PDEs) are frequently adopted to

explain various occurrences in realms of science and

engineering, generally founded on fundamental laws such as

the conservation of mass or energy. Typically, finding

analytical solutions to these PDEs for many real-world settings

is not trivial and, in some cases, not feasible. Many

conventional approaches have been proposed and studied

throughout years ,e.g., finite element methods (FEM) [1],

Gradient Discretization method [2], Spectral method [3], etc.

to approximate the solution to PDEs numerically. However,

these solutions can be computationally expensive since they

involve discretizing the problem domain into a grid and

updating the solution at each grid point. This can require many

calculations and iterations, especially for complex problems

such as turbulence simulations [4]. For this reason, as well as

the availability enormous data in scientific and engineering

domains, there has been an increasing interest in developing

machine learning (ML)/Deep Learning (DP) methods to solve

complex partial differential equations or complement

numerical solutions. Thus, the area of Scientific Machine

Learning (SciML) has emerged, integrating traditional

scientific models based on differential equations with data-

driven ML techniques, such as neural network training.

One of these methods is the so-called physics-informed neural

networks (PINNs) [5-9]. The basic idea of PINNs for solving a

forward PDE is to train a neural network to minimize errors

with respect to the solution provided at initial/boundary points

of a spatiotemporal domain, as well as the PDE residuals

observed over a sample of interior points, referred to as

collocation points. Due to the capability of PINNs to
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incorporate physical laws and their ability to provide a flexible

structure for the solution PDEs, they have been extensively

utilized for the multiphysics modeling of systems in the field

of chemical engineering. For example, PINNs have been

adopted to model the systems related to heat transfer [10-12],

compressible and incompressible flows [13-18], convection,

reaction, and advection-diffusion systems [19-25]. The

applications of the PINN method have also been extended to

study of environmental and materials engineering systems,

such as, mitigation of carbon emissions [26-29], and prediction

of materials properties [30-32].

Despite the advantages PINNs offer, several recent studies

show that training PINNs can be quite challenging for

complicated systems [33-36]. In general, PINNs try to

leverage the power of deep neural networks to learn the

behavior of complex systems while respecting the underlying

physical laws. This is achieved by incorporating the governing

equations or physical laws as a soft constraint on the loss

function, that is then minimized using ML techniques.

However, solving the optimization problem may not be

straightforward as the imposed physical term in the loss

function often involves nonlinearities that cause the loss

function to be ill-conditioned [37-39]. Several works propose

novel methods to tackle the challenges of training PINNs [40-

42]. One early work identifies a mode of failure of PINNs due

to the existence of unbalanced gradients during training and

proposes an adaptive model that utilizes gradient statistics to

assign appropriate weights to different terms in the PINNs

composite loss function [43]. Karishnapriyan et al. [33]

describes curriculum regularization and sequence-to-sequence

(seq2seq) learning as two promising solutions to address

failure modes associated with large PDE coefficients. The

importance of sampling strategies on the performance of

PINNs has been the focus of many researchers. Subramanian

et al. [35] argues that the location of collocation points greatly

influences the trainability of PINNs, motivating the

development of an adaptive collocation scheme that

progressively accumulates more collocation points around

areas where the model yields higher errors. In another recent

line of work [43], it was shown that the PINN’s performance

depends on the successful propagation of solution for

boundary/initial points to the interior points. To mitigate the

“propagation failure” they proposed the so-called evolutionary

sampling (Evo) strategy, where collocation points evolve over

training iterations to prioritize high-density regions. In contrast,

the work of Wang et al. [44] demonstrates the rapid transition

in the transition layer as the cause of failure and introduces a

curriculum-based approach that encourages neural networks to

prioritize the learning on easier non-layer regions.

In all the aforementioned literature, the initial conditions are

assumed to be fixed during training and PINN has to be

retrained for problems with different initial conditions.

Conventional methods for handling the complex initial

conditions face significant challenges, as they typically require

a fine resolution to capture the steep gradients. In such cases,

the traditional methods often lead to extensive computational

costs and numerical instabilities. For example, in the coating

process of semiconductors and MEMS devices, the final

thickness of resist film is predicted using numerical

simulations based on the governing equations of Liquid film

flows [45, 46]. These problems are highly sensitive to the

initial condition and performing multiple simulations for

different initial conditions is not cost-effective. Problems

related to fluid dynamics and heat transfer, such as high-speed

aerodynamic flows [47], biomedical flows [48], and estimation

of air pollution in a spatiotemporal domain [49], are mostly

modeled using convection, diffusion, and reaction PDEs.

Changing the initial condition when training PINN for these

problems may lead to a significant deviation of the predicted

solution from the ground truth. Therefore, it is critical to

investigate new approaches to improve the robustness of the

model against variation in initial condition. Motivated by this,

we propose to combine the existing baseline models “PINN”

and “Evo” [43] with “Curriculum Regularization” [33],

where the neural network first trains with easier initial

conditions and progressively approaches the target initial

condition, which could be hard to optimize from the beginning.

2. Methods
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The formulation of PINNs starts with constructing a neural

network ��(�, �) to deduce the solution � of a non-linear

partial differential equation [43]:

�� +�� � = 0, � ∈ �, � ∈ 0,� ; � �, 0 = ℎ � , �
∈ �; � �, � = � �, � , ∈ � 0,� , �
∈ ð�

Here,�� is non-linear spatial operator, � and � denotes space

and time, respectively, ð� is boundary of spatial domain, and

� is the time horizon. ℎ � is the initial condition and

� �, � is the boundary condition. To solve the PDE, we first

need to compute the residual function ℛ�(�, �) and the

corresponding loss function ℒ�(�) on a set of collocation

points {��, ��}�=1
� sampled from a uniformly from the entire

spatio-temporal domain (Ω = �× 0,� ).

ℛ� �, � = �
��
�� �, � +�� �� �, � , (1)

ℒ� � = 1
� �=1

�
[ℛ� ��, �� ]2� . (2)

where � is the number of collocation points. PINNs

approximate the solution of given PDE by minimizing the

overall mean-squared losses consists of ℒ � = ��ℒ� � +

���ℒ�� � + �푏�ℒ푏� � . The subscripts "�" , "��" , and

"푏�" corresponds to the residual, initial condition, and

boundary condition, respectively. The hyperparameter �
signifies the importance of each loss term on the overall loss

function. Please note that the main complication in training

PINNs arise from the existence of the differential operator in

ℒ � , which causes the loss function to be ill-conditioned.

This is very different from norm based L1 and L2
regularizations where the regularization operator corresponds

to a simple convex function.

2.1. Convection System

We consider a one-dimensional convection problem with

the following governing equation

where � is the convection coefficient. The initial and

periodic boundary conditions are as follows:

ℎ � = sin 훼� + 푘� ,

� 0, � = � 2�, � .
(4)

훼 is the rate of change of the function and 푘 is the phase.

The general loss function can be obtained as follow:

ℒ � = 1
� �=1

�
[���(�

� − ℎ �� )2�

+ ��(
���

��
+ ���

�

��
)2

+�푏�(�
� 0, � − �� 2�, � )2].

(5)

where �� = ��(�, �) presents the neural network’s output.

2.2. Reaction-Diffusion System

The one-dimensional reaction-diffusion problem can be

described using the following governing equation:

��
��
− �

�2�
��2

−휌�(1 − �) = 0, � ∈ �, �

∈ (0,�]
(6)

where � > 0 and 휌 are the diffusion and reaction coefficients,

respectively. We consider Gaussian distribution for the initial

condition and a periodic boundary condition:

ℎ � = �
−12(

� −�
� �

)2
,

� 0, � = � 2�, � .
(7)

Here, �� (= � ) is the standard deviation and � is a constant

used to scale � . The overall loss function for this problem is

given as:

��
��
+ ���

��
= 0, � ∈ �, � ∈ 0,� . (3)

ℒ � = 1
� �=1

�
[���(�� − ℎ �� )2�

+ ��(
���

��
− �

�2��

��2
−휌�(1 − ��))2

+�푏�(�� 0, � − �� 2�, � )2].

(8)
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Table 1. Hyperparameters applied in experiments on different PDE system.

PDE Method ��/���/�푏� lr.scheduler

Convection

PINN
PINN + Curriculum 1/1/1 No

Evo
Evo + Curriculum 1/100/100

StepLR
Rate = 0.9
Steps = 5000

Reaction-Diffusion PINN
PINN + Curriculum 1/100/100 No

2.3. Exper iment Setup

We first perform experiments on the time-dependent

convection system using four different baselines: “PINN”,

“PINN + Curriculum”, “Evo”, and “Evo + Curriculum”. We

consider two different convection coefficients (� = 5 and � =

15) and the initial condition sin 훼� + 푘� with 훼 ranging

from 1 to 5 and 푘 ranging from 0 to 0.5. We then study the

reaction-diffusion problem ( � = 휌 =3) using “PINN” and

“PINN + Curriculum” baselines. The � parameter in the initial

condition in equation (7) varies from 2 to 8. The neural

network architecture consists of four fully connected layers

with 50 neurons per layer and a hyperbolic tangent activation

function. For all cases, we use a periodic boundary condition

and Adam optimizer with a learning rate lr = 1e-3. After

training the models, we obtain the L2 absolute error between

the predicted result and the analytical solution (ground truth)

as:

Absolute error = 1
� �=0

� �� − � 2� (9)

where � is the exact solution and �� is the output of

NN. The number of collocation points is kept constant at� =

1000 over the whole domain Ω (nx × nt = 512 × 256). Note

that nx and nt denotes the number of grid points in spatial and

temporal domains, respectively. Table 1 provides a list of other

hyperparameter settings for different baseline method.

3. Results and discussion

The concept behind curriculum learning [50], inspired by

human education, is to start optimizing the problem with easier

training criterion and gradually increase the level of difficulty

over time. Curriculum learning has been shown to improve

various ML models for different applications including PINNs

for solving PDEs with large coefficients. Motivated by this, we

propose to implement Curriculum learning in predicting the

solution to problems with complex initial conditions. The main

idea is to train the base model using a simple initial condition

and progressively transition to a more difficult initial condition

after a certain number of iterations. This way, the model has

the opportunity to learn the easier constraint and construct a

solid foundation for learning the target constraint.

For the one-dimensional convection problem with an initial

condition given in Eq. 4 (sin 훼� + 푘� ), the baseline PINN
model is trained with and without Curriculum learning for

different values of the constants in the initial condition. After

training, we measured the absolute errors between the

analytical and predicted solution using Eq. 9. Please note that

the data points associated to PINN (denoted with hollow

circles) in Figure1 are obtained by running the code for 2.5 

104 iterations for each distinct value of the specified constant

(훼 and 푘 ), whereas the data points associated to PINN +

Curriculum are obtained for that many iterations over the

whole range of the initial condition constant. For example, at

푘 = 0 in Figure 1(a), PINN trains for 2.5  104 iterations, but

Curriculum learning trains for 5  103. This clearly grants an

unfair advantage to the “Vanilla” PINN model.
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(a) (b)

(c) (d)

Figure 1. Variation of Absolute error with initial condition parameters for “PINN” and “PINN + Curriculum” models. The PDE

is a convection problem with (a) β = 5, α = 1, (b) β = 5, k = 0, (c) β = 5, k = 0.5, and (d) β = 15, k = 0.

Figure 2. Predicting the solution to a 1D convection problem using “PINN” and “PINN + Curriculum” baseline models. The

other parameters are (a) β = 5, α = 5 and (b) β = 15, α = 5. k = 0 for both cases
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The variation of absolute error as a function of phase angle 푘

for a convection system with � = 5 and 훼 = 5 is depicted in

Figure 1(a). As one can see, the error corresponding to the

model with Curriculum learning decreases with increasing 푘
while the error rises for the PINN model. Although the value

of 푘 influences the trainability of the network, its effect is not

as notable as the effect of angular frequency 훼. Figures 1(b) &

(c) show the trends of absolute error with 훼 increasing from 1

to 5, when 푘 = 0 & 0.5, respectively. As expected, the

Curriculum model outperforms the PINN model for complex

initial conditions (large values of 훼 ). The reason that PINN

delivers better performance for small values of 훼 is the unfair

advantage it has over Curriculum. For example, at 훼 = 1,

PINN trains for 2.5  104, but Curriculum only trains for 5 

103; hence, obtaining lower error for PINN. The predicted

solutions of these models as well as the exact solution when �

= 5, 훼 = 5, and 푘 = 0 are reported in Figure 2(a). It can be

seen that, unlike PINN, Curriculum method successfully

captures the solution on the entire spatiotemporal domain. To

test the robustness of our proposed model, we even add further

complexity to the problem by increasing the convection

strength to � = 15. Similar to the previous case, Curriculum

learning notably improves the performance as the absolute

error drops by around 2 orders of magnitude for intermediate

values of 훼 and 1 order of magnitude for 훼 = 5, see Figure

1(d).

.

(a) (b)

(c) (d)

Figure 3. (a) Variation of Absolute error with initial condition parameters. (b) The exact solution and predicted solution using (c)

“Evo”, and (d) “Evo + Curriculum” baseline models to a 1D reaction-diffusion problem with � = 휌 = 3 and � = 8.
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The visualizations of the predicted solutions in Figure 2(b)

show that the “Vanilla” PINN model clearly fails at learning

the solution; however, combining PINN and Curriculum

learning results in an accurate prediction.

We next look at a one-dimensional reaction-diffusion flow

with a Gaussian initial condition, see Eq. 7. Here, we consider

four different values for � ranging from 2 to 8. In general, as �
increases the diffusivity of the flow rises, making the problem

more difficult to learn. The variation of absolute error with �

is illustrated in Figure 3(a) for a case with � = 휌 = 3. One can

clearly see that at the extreme case � = 8, the Curriculum

learning lowers the absolute error of PINN from 1.96  10-1 to

8.94  10-3, improving it by almost 2 orders of magnitude. We

also show the predicted solutions and the ground truth solution

obtained using analytical methods in Figures 3(b) – (d). It is

obvious that the PINN model is uncapable of predicting the

reaction or the diffusion components. However, by first

exposing the network to the easier problem ( � = 2) and

gradually increasing �, we were able to capture the solution in
the whole domain.

Inspired by algorithms used for biological evolution, this

iterative sampling strategy was developed to address the

propagation failure of collocation points when solving a PDE

having high residuals in very narrow regions. In this method,

we first generate collocation points through a uniform

distribution. Then, throughout each subsequent iteration, we

retain collocation points whose absolute value of its PDE

residual is greater than a predefined threshold and resample the

remainder points from a uniform distribution. We finally

merge the resampled population with the retained population

to create the population for the next iteration. The main idea

behind Evo sampling is to include more collocation points

from high PDE residual regions to embolden the

representation of these regions in the overall residual loss.

Figure 4. (a) Variation of Absolute error with initial condition parameters. (b) The exact solution and predicted solution using (c)
“Evo”, and (d) “Evo + Curriculum” baseline models to a 1D convection problem with � = 15, 훼 = 5, 푘 = 0.
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Here, we again consider a one-dimensional convection

problem with � = 15 and 푘 = 0. We examined this scheme by

utilizing the identical NN architecture as before. Compared to

PINNs, Evo sampling methods require a higher number of

iterations to converge, therefore, we trained the model for 105

epochs (four times the number of epochs for the PINN method).

Similar to the previous section, we give an advantage to the

Evo method over Evo + Curriculum method in terms of

number of iterations. Figure 4(a) shows that employing

Curriculum learning on top of Evo sampling causes the

absolute error to drop for larger values of angular frequency 훼.
Moreover, the exact and predicted solutions are depicted in

Figures 4(b) – (d). We observe that Evo + Curriculum learning

method, unlike Evo sampling, successfully captures the

solution in the entire domain. Comparing PINN + Curriculum

and Evo + Curriculum methods, we see that the latter produces

slightly more accurate results, however, it should be noted that

this comparison is biased in favor of Evo + Curriculum method

since the total number of iterations for this method is

considerably higher. In general, Evo is proven to outperform

PINN when trained for a relatively high number of epochs,

especially in the case of PDEs with very large coefficients (e.g.,

convection equation with � > 30)

4. Conclusion
SciML models, more specifically Physics-informed neural

networks, present an exciting opportunity to extend the use of

ML techniques to tackle a variety of scientific and engineering

problems. However, incorporating ML approaches with PDE-

based constraints served as a soft regularization term can result

in failure modes that prevent the learning of fundamental

physics governing a problem. We studied one-dimensional

convection and reaction-diffusion problems and showed that

the “Vanilla” PINN and Evo sampling models are unable to

predict the solutions to these problems when we impose a non-

trivial initial condition. We proposed implementing

Curriculum learning where the baseline model trains on simple

initial conditions before being exposed to the complex target

initial condition. We showed this approach lowers the absolute

error by 1 – 2 orders of magnitude and can successfully

capture the solution to the PDEs. Addressing the limitations

associated with SciML models will be crucial if we hope to

build a closer integration between scientific theories and

Machine Learning formulations.
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