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laboratory is necessary to mitigate its impact. This study aims to assess the
performance of electrocoagulation (EC) using aluminum (Al) electrodes in reducing

Chemical Oxygen Demand (COD), Total Suspended Solid (TSS), and pH level in

Ind ia. . N
ndonesia laboratory wastewater. This investigation successfully employed an EC process
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utilizing Al electrodes in both anode and cathode configurations. The experimental
conditions include Voltage (10, and 20 V), contact time (15, 30, 45, and 60 minutes),
and the electrode configuration (monopolar and bipolar). The results indicated that a
bipolar configuration of Al electrode relatively outperformed a monopolar
configuration. Optimal condition was achieved at 20 V, and contact time of 60
minutes. Results showed COD removal efficiency up to 96.15% reducing COD from
627.45 to 24.183 mg/L, TSS removal efficiency up to 92.45%, lowering TSS from 53
to 4 mg/L. While pH increased during the process, it remained within acceptable
limits. This substantial reduction in pollutants significantly improved water quality,
surpassing regulatory standards. The results suggest that EC is a promising approach
for achieving sustainable treatment for laboratory wastewater.

Keywords: Laboratory wastewater, Electrocoagulation, Aluminum electrode, COD

removal, TSS removal

1. Introduction

Despite the growing number of commercial testing methods such as adsorption and ion exchange [2, 3] as well as

laboratories, there is a lack of adequate laboratory waste membrane technologies [4-6], electrodialysis [71,

management. It is believed that a significant portion of
laboratories registered on the official website of
Indonesian Ministry of Environment and Forestry do not
have adequate waste treatment facilities. Most of these

laboratories still rely on third-party services for waste

disposal, with annual disposal being the common practice.

Due to the extended storage period of laboratory waste,
which is often composed of chemical residue, there is a
heightened risk of environmental pollution. Considering
this, to mitigate the potential for contamination, effective
waste treatment is necessary [1]. A variety of techniques

are available for wastewater treatment, incorporating
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Electrocoagulation (EC) [8].

The EC process is widely recognized as an environmentally friendly
approach and one of the most effective methods for wastewater
treatment. EC emerged as promising wastewater technology due to
superior efficiency, reduced risks associated with chemical handling
[9] lower sludge production [10], and rapid treatment compared to
conventional chemical coagulation methods [9]. EC is influenced by
several factors, namely applied voltage, electrode distance, electrode
configuration, solution pH, electrode materials, wastewater
characteristic, and contact time [11]. Extensive research has been
conducted on the application of electrocoagulation for wastewater

treatment. Table 1 Provides a comprehensive overview of these
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studies, emphasizing the impact of operational
parameters such as electrode material, current density,
and pH on treatment efficiency. Electrocoagulation
processes frequently make use of aluminum and iron
electrodes, largely due to their affordability, commercial
accessibility, and the desirable characteristics of their
hydroxide, including low toxicity and high wvalence,
which contribute to effective pollutant removal. Despite
these factors, aluminum is the preferred material due to
its stability, handling convenience, and solubility [12].
According to Huang et al. [13] the electrodes reactions
for aluminum are given in equations (1-5)

Cathode reaction for aluminum:

2H,0 +2¢¢ —»20H + H» @)

2H,0 + O2+4e—» OH +H» 2)

Anode reaction for aluminum:

Al —» AP+ 3¢ 3)

AP +30H —» Al(OH)3 “)
The oxidation of aluminum results in the formation of Al3* ions,
which subsequently precipitate as aluminum hydroxide.
Overall reaction:

2 Al+6H.0 —» 2A1(OH); + 3H2 5)
Aluminum hydroxide (Al(OH);), formed from AI** and OH- ions,
acted as coagulants to destabilized pollutant [8], the amorphous
Al(OH); generated exhibits a substantial surface area, enabling the
efficient adsorption of dissolved organic matter and colloidal
particles. These particles can be efficiently separated from the
aqueous phase through floatation [14]. The formation of hydrogen
bubbles at cathode increases fluid agitation and aids in contaminant
adsorption, decreasing their buoyant density. Consequently, the

floatation separation process is enhanced [15].

Table 1. Overview of documented research on electrocoagulation in water treatment.

Pollutant Treatmen .
Waste water . . Removal efficiency
concentration Electrode t time References
source . (%)
(mg/L) (min)
Fish 520 (COD) Aluminum 120 96.34 (COD) Munawarah, et al. [16]
Processing 262 (TSS) and Iron 73.22 (TSS)
Oleochemical 87000 (COD) Aluminum 30 62.64 (COD) Azli & Azoddein [17]
983 (TSS) 66.12 (TSS)
Domestic 472 (COD) Aluminum 27 94 Oktiawan et al. [18]
Wastewater and Iron
Tanney 4162.3 (COD) Aluminum 24 56.8 (COD Aguilar-Ascon, et al.
Industry 1825 (BOD 69.2 (BOD) [19]
Ketchup 12032 (COD) Aluminum 20 81.86 (COD) Syaifuddin & Bagastyo
Industry 847.07 (TSS) 82.61 (TSS) [20]
Cork Boiling 271 (TSS) Aluminum 60 99 Silva et al. [21]
Textile 369-397 (COD) Copper and 20 73.8+1.57 Nam et al. [22]
Dyeing Aluminum
Oil rigs 1568 (TSS) Aluminum 60 67 Ale-Tayeb et al. [23]
drilling and Iron
Furniture 23552 + 5649 Stainless-steel 30 92.5+0.6 Vicente et al. [24]
industry (COD) and Iron
Hospital 4533 (COD) Iron 90 80.78 Rangseesuriyachai et al.

[25]
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In an effort to address the issue of laboratory waste
management, the objective of this study was to evaluate
the performance of the electrocoagulation process in
treating laboratory  wastewater by  systematically
investigating the impact of key operational parameters
such as applied voltage, contact time, and electrode

configuration.
2. Materials and methods

2.1 Laboratory wastewater characteristics
Laboratory wastewater samples were obtained from an
environmental laboratory located in Cimahi, West Java.
These samples consisted of residual samples from
analytical instrument, leftover reagents, and waste
generated during the analysis process. A total of 16
experiments were conducted, each using 500 mL of
sample. The characteristics of the laboratory wastewater
prior to EC are summarized in table 2.

Table 2. Characteristics of Laboratory Wastewater

Parameter Value DIS.Ch.a ge
limits

pH 1.77 6.0-9.0
COD (mg/L) 627.45 150.0
TSS (mg/L) 53.00 50.0

The discharge limits were adopted from Indonesian
PERMEN LHK RI No,
P.S/MENLHK/SETJEN/KUM. 15/10/2014. The sample

standards listed on
was kept at 4 °C to prevent degradation.

2.2 Equipment and instrument

The EC setup consisted of a 1000 mL beaker as the
reaction vessel, a Direct Current (DC) power supply
(ATTEN PPS3005S), Al electrodes (10 x 4 x 0.659 cm),
a pH meter (Mettler Toledo FG2), an oven (Memmert
UNSS) for electrode drying and TSS measurement, a
spectrophotometer (Shimadzu UV-VIS 1800) for COD
measurement, and an ultrasonic cleaner (Dealta D68H)
for electrode maintenance.

2.3 Operating conditions and preparations.

Al electrodes (10 x 4 x 0.659 cm) were used in this

study. The electrode was subjected to a series of
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preparation steps, including polishing, ultrasonic cleaning,
sanding, acetone rinsing, and oven drying at 100 °C for 60
minutes. After being dried to a constant weight and stored in a
desiccator, the electrodes were connected to a DC power supply
and positioned vertically and parallel., with 2 cm inter-electrode
distance. To minimize Ohmic resistance [26], smaller inter-
electrode distance is generally preferred. For each experiment,
500 mL of wastewater was treated in 1000 mL beaker, as

depicted in figure 1.

Figure 1. Electrocoagulation setup.

One aluminum serves as the cathode, while the other acted as the
anode. The study was conducted in 16 batches, varying the EC
process length (15, 30, 45, and 60 minutes), electrode
configuration (Monopolar, and Bipolar), and applied voltage (10,
and 20 V).

2.4 Analytical method

The pH measurements were conducted using pH meter. The
quantification of COD and TSS was carried out using the
methodologist outlined in Standard Methods for the Examination
of Water and Wastewater [27]. COD was measured using a
closed reflux colorimetric method with potassium dichromate
(K2Cr207) 0.01 N as the oxidant and 10.12 g silver sulfate
(Ag2S04) in 1000 mL of Sulfuric Acid (H2SO4) as the catalyst.
Samples was digested at 150 °C for 120 minutes in a
thermoreactor (CR2200 - WTW). COD analysis was performed
using a UV/Visible spectrophotometer (Shimadzu UV-1800).
TSS was measured using a filtration method with glass
microfiber filter paper (Whatman 934-AH 1.5 um). The filter

paper was dried at 120 °C for 60 minutes to a constant weight.
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All reagent used in this study were analytical grade
(p-a.) from Sigma-Aldrich.
The percentage removal efficiencies of COD and TSS

were calculated using equation 6 and 7, respectively [28]

__CODo — CODt

COD Removal = oo X 100% (6)
TSS Removal =22 1009, )
TSSo

Where CODo and CODt symbolize the initial and final
COD concentrations (mg/L), respectively. Likewise,
TSSo and TSSt represent the initial and final TSS
concentrations (mg/L).

3. Results and discussion

3.1 Temperature changes during EC process

The temperature rise of the wastewater during treatment
depends on factors like pH, voltage, and processing time.
Figure 2 visually represents these temperature changes
during the EC process. As shown in Figure 3, the EC
process causes the temperature rise from 20 to 77 °C.

The release of AI** ions during EC leads to an increase in
pH, which, in turn, raises the temperature and accelerate
the reaction rate [29, 30]. Extended EC treatment can
lead to a substantial increase in wastewater temperature.
This temperature rise is primarily due to the exothermic
nature of the electrochemical reactions involved [31].
Exothermic reactions release heat, raising the solution
temperature. The heat generated by the process can lead
into increase in wastewater temperature, potentially
affecting both treatment efficiency and the quality of
treated effluent [32]. Consequently, rigorous monitoring
and control of temperature are necessary. Excessive
temperature increase can affect the efficiency of the
process and the quality of the treated effluent [33].

3.2. COD removal efficiency

According to the research conducted by Gusa et al. [34],

the addition of electrodes results in more efficient
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outcomes. As seen on Figure 3, the concentration of COD removed
increased significantly due to the addition of two electrodes. With
the highest efficiency of COD removed at 96.14%, addition of two
electrodes showed more efficient outcome. It is because by
increasing the number of the electrodes, the active surface area also
increases, thereby increasing the number of contaminants that
adhere to the electrodes [35]. When there are additional plates
placed between the anode and cathode, the EC process performance
improves due to an increase in the amount of coagulants, which
subsequently enhances removal efficiencies [36].

Figure 4 demonstrates the variation in COD removal efficiency

as a function of applied voltage for various electrode
configurations. In accordance with Faraday’s law, an increase in
applied voltage results in proportional increase in the quantity of
coagulant generated, leading to enhanced COD removal [37],
the applied voltage not only determines the coagulant dosage
rate but also influences bubble production rate and size. This, in
turn, affect mass transfer phenomena between pollutants,
coagulants, and gas, thereby impacting floc formation [38].
Figure 4 shows that for a given contact time, the COD removal
efficiency exhibited a slight increase with the elevation of
electrical potential. Variations in the configuration of electrodes
also led to improved efficiency at a higher electrical potential of
20 V. Although higher voltages resulted in enhanced treatment
performance, they concurrently led to a substantial increase in
energy consumption, as confirmed by previous research [39].
Our experimental findings further corroborate  this,
demonstrating a significant rise in energy consumption from
12.29 to 41.47 kWh/m? for the monopolar. configuration and
from 23.25 to 114.8 kWh/m? for the bipolar configuration.
Consequently, operational costs increased from Rp 10.44 to Rp
35.34 for monopolar and from Rp 19.76 to Rp 97.55 for bipolar
electrode configurations, respectively. These results highlight the
importance of balancing treatment performance with energy
efficiency.

The variation of applied voltage is also conducted in different

given time; the results can be seen in table 3.
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Figure 2. Changes in temperature over time for monopolar and bipolar electrode configurations during the electrocoagulation

process, indicating the rise in temperature from 20 °C to 77 °C.

B Monopolar, 10 V B Monopolar, 20 V  Bipolar, 10V M Bipolar, 20 V

98.00 % COD Removal
96.14

96.00 948
93.99

94.00 %56 93.53 93.3
92.22 92.5
91.8
90.91 91.75
92.00 904
: 89.91
90.00
88.00 _
86.00
84.00
82.00
30 45

Contact time
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Figure 3. Comparison of COD removal efficiency under varying electrode configuration, showing the increase in efficiency
from 92.53 to 94.84% and from 93.3 to 96.14% with addition of two electrodes.
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Figure 4. Variation of COD (Chemical Oxygen Demand) removal efficiency as a function of applied voltage for different

configuration of electrodes used in the treatment process.

Table 3 shown that increasing applied voltage resulted in a
modest improvement in the outcome of each experiment. This
is credited to the fact that higher voltage leads to increased
oxidation of aluminum, resulting in an increased quantity of
precipitate for pollutant removal [40].

As contact time increases allows for greater formation of
metal ions and hydroxide flocs, which in turn enhances the
removal pollutant from the wastewater [41]. Conversely, with
shortened contact time, there is insufficient time for both the
A to dissolve from the anode which act as a destabilizing
agent [42], and hydrogen gas at cathode in the solution [43].
Figure 5 depict more efficient outcomes of the EC process
under prolonged contact time. Prolonging the contact time
from 15 to 60 minutes led to a slightly enhancement in COD
removal, increasing from 86.77 to 92.53% for the monopolar
configuration and from 89.75 to 94.84% for the bipolar
configuration. When given higher voltage, the amount of
COD removal showed a slight increase from 89.67 to 93.3%
for monopolar configuration, and from 90.91 to 96.14% for
bipolar configuration. This is ascribed to the fact that the
electrolysis duration significantly impacts the production of

requisite ion concentrations from the electrodes. These ions
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serve as precursors for adsorbent formation. Simultaneously, the
electrolytic process generates gas bubbles at both electrodes,
which enhance the upward transport of destabilized
contaminants within the solution [8].

3.3. TSS Removal efficiency

The effectiveness of pollutant removal through electrolysis
depends on several factors, including metal ions present
during the process, type of electrode used, electrical current
strength and electric potential, and the duration of the process
[44]. Table 4 summarizes the results of the experiments
conducted to investigate the influence of various factors,
such as electrode configuration, applied voltage, and contact
time, on TSS removal efficiency. The data suggests that the
highest TSS removal was achieved using a bipolar
configuration at an applied voltage of 20 V and a contact
time of 60 minutes, among the various factors tested based
on the experiment results.

This is evidenced by a TSS reduction of 49 mg/L, resulting in
efficiency of 92.45%. These results can be attributed to several
factors, including the addition of two extra electrodes, which
increased the active surface area, thus enhancing pollutant

removal [35], while the extended reaction time provided
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sufficient time for the formation of a larger number of metal
ions and the evolution of a greater volume of gasses [45],
both of which contributed to the improved pollutant removal

efficiency.

Table 3. Results showing the impact of applied voltage

on COD removal efficiency across different
experimental setups.
. COD
antact Electrode Applied removal
time configuration voltage efficiency
(Minutes) V) 0
(%)
15 Monopolar 10 86.77
30 Monopolar 10 89.91
45 Monopolar 10 91.75
15 Monopolar 20 89.67
30 Monopolar 20 90.44
45 Monopolar 20 91.83
15 Bipolar 10 89.75
30 Bipolar 10 92.22
45 Bipolar 10 93.53
15 Bipolar 20 90.91
30 Bipolar 20 93.60
45 Bipolar 20 93.99

Additionally, increasing the applied voltage accelerated the
EC process. The elevated current density facilitated a higher
rate of metal ion release, leading to increased precipitate
formation and improve pollutant removal [46]. Therefore, the
use of two additional electrodes and a higher voltage yielded
better results compared to the other configurations at all
tested time intervals. This suggests that the configuration and

operating parameters significantly influence the performance

of the EC process [11].

3.4. pH change

The EC process typically results in an increase in solution pH.

This pH elevation is attributed to electrolytic reactions at the
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aluminum cathode. The reaction at the cathode causing the
reduction of water (H20) generated hydroxide ions (OH") and
hydrogen gas (Hz). Several studies have reported an increase in
solution pH during the EC process [47-50], observed that
solutions with initial pH below pH 9 underwent pH increases. In
this study, shown by Figure 6 it was also observed that the
solution pH increased. The most significant pH increase was
observed in the experiment using four plates at 20 V. The most
suitable pH for the process, 7.73, was observed at a contact time
of 45 minutes. Increasing the contact time to 60 minutes caused
a notable rise in pH, approaching an alkaline value of 8.92. This
result is related to the fact that as the contact time and applied
voltage in the EC process increase, the OH ions and H» gas
generated at the cathode also increases. Consequently,

prolonged EC contact time may lead to a highly alkaline pH (>

9), which can pose potential hazards [39].

To evaluate the effects of contact time, electrode configuration,
and applied voltage on the efficiency of TSS and COD removal,
a two-way Analysis of Variance (ANOVA) without replication
was utilized. This statistical method was deemed appropriate as
each experimental batch was subjected to a single test. Two
hypotheses were formulated: the null hypothesis, which asserts
that there are no significant differences between the means of
the samples, and the alternative hypothesis, which posits that
significant differences exist. The results of the ANOVA analysis
provided calculated F-values and critical F-values for both the
electrode configuration and the contact time/applied voltage
factors. The calculated F-values were 2.8444 and 171.76,
respectively, which surpassed their corresponding critical F-
values 0f 2.0148 and 3.3158.

Consequently, the null hypothesis was rejected, indicating that
variations in electrode configuration, contact time, and applied
voltage had a significant impact on the efficiency of TSS and
COD removal. Moreover, the p-values associated with the
electrode configuration and contact time/applied voltage factors

were determined to be 0.0072 and 4 x 107", respectively.
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Table 4. TSS removal efficiency under various condition.

Contact time Electrode Applied TSS removed Efficiency (%)
(Minutes) configuration voltage (V) (mg/L) i
15 Monopolar 10 38.60 72.83
30 Monopolar 10 41.80 78.87
45 Monopolar 10 44.00 83.02
60 Monopolar 10 46.20 87.17
15 Monopolar 20 40.00 75.47
30 Monopolar 20 42.00 79.25
45 Monopolar 20 45.00 84.91
60 Monopolar 20 46.80 88.30
15 Bipolar 10 41.60 78.49
30 Bipolar 10 43.40 81.89
45 Bipolar 10 45.60 86.04
60 Bipolar 10 47.40 89.43
15 Bipolar 20 44.80 84.53
30 Bipolar 20 46.20 87.17
45 Bipolar 20 47.80 90.19
60 Bipolar 20 49.00 92.45

98.00
;\3 —@— Monopolar, 10 V
> 96.00
5 —&— Monopolar, 20 V
'S 94.00
t .
= Bipolar, 10 V
§ 92.00
g —&— Bipolar, 20 V
& 90.00
@)
o
@) 88.00

86.00

10 20 30 40 50 60 70

Contact time (Minutes)

Figure 5. Effect of contact time on COD removal efficiency, demonstrating how longer contact times enhance pollutant removal

rates.
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The p-values obtained from the statistical analysis, all of which
were less than 0.05, indicated that the observed differences in
the efficiency of the electrocoagulation process are statistically
significant. This confirms that the variation in electrode
configuration, contact time, and applied voltage have a

substantial impact on the treatment process.

=—&— Monopolar, 10 V
10

== Monopolar, 20 V

pH scale

0 20 40 60 80
Contact time (Minutes)

Figure 6. Change in pH levels during the electrocoagulation
process, demonstrating the increase in pH over time with
varying configurations. The most significant pH increase was
observed with four plates at 20 V, reaching a peak of 8.92 after
60 minutes of contact time, indicating a trend towards

alkalinity as the electrocoagulation process progresses.

4. Limitations

Scale Limitations: The experiments were conducted on a
laboratory scale, which may not fully represent the
complexities and variabilities present in full-scale industrial
wastewater treatment applications. The results may not be
directly transferable to larger systems without further
validation.

Electrode Material Constraints: The study focused solely on
aluminum electrodes, which, while effective, may have
limitations in terms of corrosion and longevity compared to
other materials. Future studies could explore alternative
electrode materials to assess their efficiency and durability.
Environmental Variability: The wastewater samples used
were collected from a specific environmental laboratory,

which may not reflect the diverse characteristics of
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wastewater from different sources. Variations in
composition could affect the generalizability of the findings.
Limited Parameter Exploration: Although several
parameters such as voltage, contact time, and electrode
configuration were varied, other factors like temperature
fluctuations and wastewater composition were not
extensively studied. These factors could influence the
electrocoagulation process and its efficiency.

Long-term Performance: While this study successfully
demonstrated the effectiveness of electrocoagulation in
treating laboratory wastewater, it is important to note that
the longevity and stability of the aluminum electrodes over
multiple treatment cycles were not examined. Future
research should focus on evaluating these aspects to
determine how electrode performance may change with
prolonged use. Understanding the durability of electrodes
will be crucial for optimizing operational parameters and
ensuring sustainable application in industrial wastewater

treatment systems.

5. Conclusion

EC proved to be an effective method for laboratory
wastewater treatment, achieving compliance with Ministry
of Environment and Forestry Regulation No.5/2014
standards for COD, TSS, and pH. Optimal pollutant
removal was achieved using bipolar electrode configuration
at 20 V. Significant COD and TSS removal were achieved
within 60-minutes contact time, with COD removal
efficiencies ranging from 86.77 to 96.15%, initial COD
level of 627.45 mg/L were reduced to a minimum of 24.18
mg/L. Similarly, TSS removal efficiencies ranged from
72.83 to 92.45%, reducing initial TSS level of 53 mg/L to a
minimum of 4 mg/L. Meanwhile, optimal pH was achieved
at 45-minute contact time with a value of 7.73. The
of this

findings study

could Dbe

suggest that the proposed

methodology adapted  for  full-scale

implementation in industrial wastewater treatment facilities.
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