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ABSTRACT: This article provides a thorough overview of a wide range of
advanced statistical methods that have found extensive and resilient
applications in the intricate field of spatial modeling for variables in a
geographical information system (GIS) platform. The noteworthy triumph
of these approaches can be due to a convergence of speed, dependability,
precision, and an inherent eco-consciousness that coexist to reshape the
scenario of environmental data analysis. The utilization of these models has
outshined conventional methods in the present terrain of scientific
investigation and environmental analysis, becoming an authentication of
innovative research and decision-making procedures. These approaches
demonstrate commendable data utilization efficiency by effectively
accepting reduced sample sizes. This not only saves resources but also
aligns with the ethical imperative of minimizing environmental effects
wherever possible. Furthermore, the combination of these statistical
techniques with GIS has paved the way that greatly expands their utility.
This tool helps to discover deep spatial linkages, extrapolate trends and
findings into actionable insights that are relatable across all disciplines.
These approaches encompass not only predictive modeling but also the
realms of error assessment and efficiency evaluation. In conclusion, the
adoption of these statistical methods is quite useful in facilitating sound
decision-making environmental studies. Some of the domains include soil
properties, air quality parameters, vegetation distribution, land cover and
land use, water quality parameters, temperature and climate variables,
natural hazards, urban infrastructure planning, ecological habitats, noise
pollution levels, and radiation and exposure assessment. As the trajectory of
scientific growth unfolds, these techniques will serve in directing
researchers, practitioners, and policymakers to a future where empirical
accuracy and environmental consciousness meet synergistically.
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1. Introduction

Geostatistics, as a specialized branch of
statistics, focuses on analyzing, modeling,
and interpreting spatial data, providing
valuable insights into spatial relationships and
the variability of natural phenomena across
different locations in a GIS (Geographical

Information System) environment. GIS
(Openshaw and Clarke, 2019; Wang and Liu,
2023) is fundamentally a framework for
gathering, organizing, analyzing, and
visualizing diverse types of geographic
information. It enables users to grasp detailed
relationships, discover patterns, and uncover
trends within a geographic environment by
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seamlessly integrating data such as maps,
satellite imagery, topography data, and
attribute data (on-ground analysis data). It is a
powerful visualization tool, that translates
raw data into understandable maps and
graphics by utilizing the knowledge of
geography. Initially developed for estimating
ore reserves in the mining industry,
geostatistics has now found extensive
application in diverse fields such as geology
(Xu and Zhang, 2023), environmental science
(Ghute et al., 2023), agriculture (Mathenge et
al., 2022), hydrology (Demarquet et al., 2023),
and many more. The process of constructing
and analyzing mathematical or statistical
representations of spatial relationships, trends,
and variations within a geographic area is
referred to as spatial modeling. It entails
using data to construct models that capture
the spatial distribution of phenomena such as
environmental factors throughout a specific
geographical location. These models seek to
elucidate the underlying patterns,
relationships and influences that govern the
distribution of these occurrences. In the
domain of soil science (Khallouf et al., 2020;
Criado et al., 2021), geostatistics plays a
crucial role in understanding the spatial
variability of soil parameters. Soil, being a
complex and heterogeneous medium, exhibits
significant variations over short distances.
The geostatistical analysis aids in
characterizing spatial variability
(AbdelRahman et al., 2020), creating spatial
models (Zakeri and Mariethoz, 2021), and
making reliable predictions (Kingsley et al.,
2019) of soil properties at unsampled
locations. Modern geostatistical tools and
techniques, such as semivariograms, spatial

auto-correlogram, and various interpolation
approaches, are employed to assess the spatial
variability (Gökmen et al., 2023; Khan et al.,
2021) of soil properties.

In contrast, classical statistical techniques
typically rely on descriptive statistical tools
like mean, median, mode, coefficient of
variation, etc., to measure soil property
variability without considering its spatial
dependence on the sampling point. However,
they fail to adequately explain the continuous
spatial variability pattern. Key tools of
geostatistics (Gangopadhyay and Reddy,
2022) include variogram, kriging
interpolation, spatial uncertainty, and cross-
validation. The variogram is a fundamental
concept that quantifies the spatial correlation
structure in the data by measuring the average
difference in values between pairs of data
points as a function of their separation
distance or lag. It helps determine the range
of spatial influence, identify trends, and select
appropriate interpolation methods. Variogram
models are commonly employed to describe
the spatial correlation in the dataset. The
interpretation of variograms (Fischer, 2019)
involves three components: Sill, Range, and
Nugget effect. The Sill represents the plateau
or "sill" at large lag distances, signifying the
maximum spatial variability. This plateau
indicates the range of influence beyond which
data points are not significantly correlated.
The Range is the distance at which the
variogram levels off, indicating the spatial
correlation range of the soil parameter, with
data points within this range showing a strong
correlation. Lastly, the Nugget effect
represents the abrupt change in the variogram
at a lag distance of zero.
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Figure 1. Methods to map spatial variability in parameters by using geostatistical techniques in
a GIS platform.

Figure 2. Softwares to study the spatial datasets.
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The variogram plays a crucial role in
geostatistics as it accounts for measurement
errors, microscale variability, or other factors
causing spatial variation at very small
distances. It is visualized through a graph that
depicts the pattern of semivariance change
with varying distances between two sampling
points.

Semivariance is calculated by measuring
the dispersion of all observation points from a
mean or specific value derived from the
dataset. It serves to assess spatial continuity
or spatial autocorrelation as a function of
distance. When the sampling interval between
two locations is smaller than the range
distance, the variable is considered spatially
autocorrelated. Consequently, the spatial
variability assessment of that variable
becomes significant for its proper
management. The N:S ratio provides insight
into the degree of spatial dependence of a soil
parameter. Different N:S value ranges, such
as <0.25, 0.25-0.75, and >0.75, indicate
strong, moderate, and weak spatial variability
of a particular soil parameter, respectively.
Estimating variogram parameters (sill, range,
and nugget effect) involves fitting various
theoretical models to the experimental
variogram. The choice of the model depends
on the data and spatial characteristics of the
soil parameter being analyzed. Commonly
used variogram models (Molla et al., 2023)
include the spherical, exponential, Gaussian,
and power models. The spherical model is a
simple model with a sharp cutoff at the range,
resembling a sphere. Conversely, the
exponential model is a smoother and
continuous model that gradually approaches
the sill. These models aid in capturing the
spatial correlation structure and are

fundamental for accurate predictions and
spatial analysis (Mondal et al., 2021) in
geostatistics. The Gaussian model shares
similarities with the exponential model but
exhibits a more gradual increase in spatial
correlation. On the other hand, the Power
model is specifically useful for data
displaying power-law behavior, often
employed for variograms with heavy-tailed
distributions. Figure 2 showed the software
used in spatial datasets.
1.1 Error estimation

To identify the most suitable model for a
particular soil property, the selection process
involves minimizing the error and
maximizing the model's efficiency known as
the error calculation or cross-validation. The
correctness of the spatial model is checked
with the error percentages. The "error
percentage" provides a quantitative
representation of the difference between
predicted and observed values at unsampled
locations. The predicted values include the
model-generated value at a point, whereas the
observed values are the recorded values at the
location. It is also known as prediction error
or estimation error, and it is used to assess the
effectiveness of the chosen interpolation
strategy. This broadly incorporates mean
absolute error (MAE), root mean square Error
(RMSE), and mean squared prediction error
(MSPE). The "Mean Absolute Error (MAE)"
calculates the average of absolute differences
between predicted and observed values,
providing a measure of usual error magnitude
while ignoring directional differences. The
root mean square error (RMSE)" on the other
hand, encompasses both error magnitude and
direction, expressing the square root of the
average squared difference between the two
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sets of values. Meanwhile, the "mean squared
prediction error (MSPE)" focuses on the
squared differences between them,
emphasizing bigger errors by squaring. These
error percentage measurements provide an
idea of the efficiency and precision of their
interpolation procedures. A smaller error
percentage indicates improved prediction
accuracy, whereas a higher error percentage
indicates a less accurate prediction. Various
cross-validation techniques, such as leave-
one-out cross-validation or k-fold cross-
validation, are commonly employed to
validate geostatistical models (Rajalakshimi
et al., 2023). In addition to the Gaussian,
exponential, and power models, geostatistics
offers various other methods and techniques
to enhance spatial analysis and prediction.
These methods aim to handle diverse data
structures and characteristics, providing
detailed insights into spatial variability
(Nagaraj et al., 2023) and the correlation of
soil properties. The whole analysis of datasets
is broadly divided into data exploration tools,
deterministic method, geostatistical method
and interpolation with barrier method which
are described below:
2. Data exploration tools

These are the tools used to explore or
understand the dataset in detail (Figure 3). On
the basis of their utility and properties they
can be further subdivided as histogram,
normal Q-Q plot, voronoi maps, trend
analysis, semivariogram, general Q-Q plot
and cross variance cloud.
2.1 Histogram

A histogram is a graphical (Reza et al.,
2016; Xu and Zhang, 2023) representation of
a dataset's distribution, offering a visual

means to comprehend the underlying
frequency or probability distribution of
numerical data. The dataset is divided into
intervals or bins, and the height of each bar in
the histogram corresponds to the frequency or
count of observations falling within that bin.
Histograms prove invaluable in identifying
patterns, understanding central tendencies and
data spread, detecting outliers, and
visualizing the overall shape of the
distribution. As such, they are commonly
employed in data analysis and exploratory
data analysis (EDA) processes.
2.2 A normal quantile-quantile (Q-Q) plot

A quantile-quantile plot, often abbreviated
as a normal Q-Q plot or simply a Q-Q plot, is
a graphical tool used to assess (Othmani et al.,
2023; Wang and Liu, 2023) whether a dataset
adheres to a normal distribution. It is
achieved by comparing the quantiles of the
dataset against the quantiles of a theoretical
normal distribution. When the points on the
Q-Q plot closely align along a straight line, it
indicates that the data is approximately
normally distributed. Conversely, deviations
from the straight line in a specific pattern
suggest the presence of skewness or heavy-
tailed characteristics in the data. If the points
on the plot exhibit a clear curvature or an "S"
shape, it indicates significant non-normality.
Q-Q plots are valuable for detecting
departures from normality and are commonly
employed in statistics, particularly during
EDA. They offer visual insights into the data
distribution and can aid in selecting
appropriate statistical techniques or deciding
on data transformations if normality
assumptions are necessary for a particular
analysis. In summary, Q-Q plots provide a
powerful tool for evaluating the conformity



Journal of soil, plant and Environment Singh and Sarma

www.jspae.com 84

Figure 3. From ground to final output (Source: Singh and Sarma, 2023).

of a dataset to a normal distribution and play
a vital role in statistical analyses.
2.3 Voronoi maps

Voronoi diagrams, also known as Voronoi
tessellations, are spatial partitions of a given
area into regions based on the distance to a
set of points called "seeds" or "sites." Each
region in a Voronoi map represents the area
closest to a particular seed compared to any
other seed in the set, and these regions are
referred to as Voronoi cells or polygons.
Voronoi maps visually depict spatial
relationships, illustrating how the study area
is divided based on proximity to the seed
points. Voronoi maps serve as a powerful tool
for understanding spatial (Lu et al., 2022)
relationships and find extensive applications
in various fields. They efficiently partition
space based on distance and are widely used
in geography, cartography, spatial analysis,
computer graphics, animation, art and design,
and many other domains. The versatility of

Voronoi diagrams makes them invaluable for
analyzing spatial data and visualizing
proximity-based patterns in a given area.
2.4 Trend analysis

Trend analysis (Mousavi et al., 2023) is a
statistical technique that involves examining
the pattern of data over time to identify
consistent upward or downward movements,
or other patterns, in the data series. This
method is widely used in diverse fields, such
as economics, finance, marketing, and
environmental science (Bangroo et al., 2023),
to gain insights into the historical behavior of
a variable and make predictions about its
future behavior. To quantify the trend in a
data set, linear regression or exponential
growth/decay models are often utilized.
These models help in understanding the
direction and magnitude of the trend. Trend
analysis serves as a valuable tool to compare
present and past trends for a specific variable,
allowing for a better understanding of its



Journal of soil, plant and Environment Singh and Sarma

www.jspae.com 85

Figure 4. Spatial Maps of Temperature and Precipitation generated by using Kriging
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evolution over time. By analyzing historical
data trends, decision-makers can make
informed predictions and take appropriate
actions to respond to changing conditions and
plan for the future effectively. Trend analysis
enables the identification of important
patterns and can provide valuable insights
into the underlying factors influencing a
particular variable's behavior.
2.5 Semivariogram

The semivariogram, also referred to as a
variogram or semivariance function, is a
fundamental tool used in geostatistics
(Dongare et al., 2022; Fischer, 2019) to
analyze spatial variability and quantify spatial
autocorrelation within a dataset. This
statistical measure illustrates how data points
vary concerning their spatial separation or lag
distance. Essentially, the semivariogram
reveals how the similarity of data values
changes with distance. To calculate the
semivariogram, one employs semivariance,
which is half the average squared difference
between data points within a given lag
distance. By doing so, it quantifies the level
of similarity or dissimilarity between data
points at a specific distance apart. When the
lag distance is small, the semivariance tends
to be low since nearby points exhibit higher
similarity. However, as the lag distance
increases, the semivariance may increase up
to a certain point, representing the spatial
autocorrelation range or "nugget." Beyond the
nugget, the semivariance may reach a plateau,
indicating that the spatial dependence has
reached its maximum.

The shape of the semivariogram assists
statisticians in identifying the appropriate
spatial model for interpolation or prediction.
Common models used to fit the

semivariogram include the exponential,
spherical, and Gaussian models. The
estimation of the semivariogram can also be
visualized through a covariance cloud
(Openshaw and Clark, 2019), which
represents the covariance between two
variables. Each point in the cloud corresponds
to a pair of data points, and its position on the
graph reflects their joint covariance. This
representation provides further insights into
spatial relationships and helps in
understanding the spatial structure of the
dataset.
2.6 A general quantile-quantile (Q-Q) plot

A general quantile-quantile (Q-Q) plot is a
graphical tool used to evaluate whether a
dataset adheres to a particular probability
distribution. Unlike the normal Q-Q plot,
which specifically checks for normal
distribution, the general Q-Q plot can be
employed to assess the fit of data to various
theoretical distributions. In a general Q-Q
plot, if the dataset follows the target
distribution, the points on the plot will
approximately align along a straight line.
Deviations from this straight line indicate a
difference from the specified distribution. If
the points closely follow the straight line, it
suggests that the data is well-described by the
chosen theoretical distribution. On the other
hand, if the points deviate from the line in a
systematic pattern, it indicates that the data
differs from the target distribution. General
Q-Q plots are invaluable tools in statistical
analysis, as they provide a visual means to
assess the goodness of fit between data and
different theoretical distributions. They are
particularly useful when determining the most
appropriate distribution for modeling the data
or when testing assumptions in statistical
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methods that rely on specific distributions. By
employing general Q-Q plots, researchers can
gain insights into the suitability of various
distributions for representing their data and
make informed decisions about the choice of
statistical models (Lu et al., 2022; Nagaraj et
al., 2023) and assumptions.
2.7 Cross Variance

Cross variance (Othmani et al., 2023,
Fischer, 2019) refers to the covariance
between two variables in a multivariate
setting. It is a measure of how two variables
vary together, capturing the degree of
correlation or relationship between them. The
cross variance is commonly used in statistical
analysis to understand the association
between two variables and to assess their
joint behavior. To calculate cross variance,
one can observe the cross-variance cloud,
which is a visual representation of the
covariance or correlation between the two
variables. This is achieved by plotting the
data points of both variables on a scatter plot,
with one variable on the x-axis and the other
on the y-axis. The resulting cloud of points
provides insights into the strength and
direction of their relationship. A straight
linear-shaped cloud indicates a strong
positive or negative correlation between the
variables, while a scattered or elliptical cloud
suggests a weaker or no correlation. By
analyzing (Reza at al., 2016) the cross-
variance cloud, researchers can quickly assess
the level of association between the two
variables and make informed decisions about
their relationship in the dataset.
3. The deterministic way

A deterministic method is an algorithm
(Molla et al., 2023; Zakeri and Mariethoz,
2021) or approach that consistently generates

the same output for a given input, regardless
of the number of times it is executed. It
operates without any randomness or
uncertainty, resulting in a completely
predictable and consistent outcome. This
quality makes deterministic methods highly
valuable in fields such as computer science,
mathematics, physics, and engineering, where
repeatability, reliability, and precision are
essential. Their key characteristics include
repeatability, predictability, the elimination of
uncertainty, and overall consistency. By
offering reproducibility and stability,
deterministic methods ensure reliable and
accurate results in various applications,
ranging from simulations to critical decision-
making processes. The deterministic method
includes four subdivisions:
3.1 Inverse distance weighting (IDW)

Inverse distance weighting (IDW) is a
widely used interpolation technique in spatial
analysis and geostatistics for estimating
values at unsampled locations based on
nearby sampled data points. The fundamental
assumption of IDW (AbdelRahman et al.,
2020, Openshaw and Clark, 2019) is that
values at unsampled locations are influenced
more by the values of nearby points than
those farther away. To achieve this, the
method employs a power parameter "p" that
controls the influence of nearby points on the
estimation. Typically, "p" is set between 1
and 3, with lower values giving more weight
to points closer to the target location and
higher values providing more equal weight to
all points. IDW is favored for its simplicity
and intuitive nature, making it
straightforward to implement. However, it
does have some limitations. One such
limitation is its sensitivity to the choice of the
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power parameter, which can affect the
interpolation results significantly.
Additionally, IDW tends to produce "bull's-
eye" artifacts around data points, particularly
when the data is sparse or unevenly
distributed. As a result, IDW is often utilized
for basic interpolation tasks and serves as a
baseline for more sophisticated interpolation
methods in GIS and spatial data analysis.
These advanced techniques (Molla et al.,
2023) takes into account additional factors,
such as spatial autocorrelation, spatial trends,
and variogram models, to achieve more
accurate and robust interpolation results for
complex spatial datasets. Despite its
limitations, IDW remains a valuable tool in
geospatial analysis, providing a quick and
straightforward solution for certain
interpolation needs.
3.2 Global polynomial interpolation (GPI)

Global polynomial interpolation (GPI) is
an interpolation technique utilized to estimate
values between known data points by fitting a
polynomial function to the entire dataset.
Unlike local interpolation methods, such as
inverse distance weighting, GPI considers the
entire dataset to create a single polynomial
function that smoothly fits all the given data
points. The objective of global polynomial
interpolation is to find a polynomial function
that accurately passes through all the
provided data points, allowing for the
approximation of values at any point within
the dataset's range. While global polynomial
interpolation offers advantages, such as
producing a smooth global approximation of
the entire dataset, it may not be suitable for
datasets (Zakeri and Mariethoz, 2021) with a
high degree of noise or outliers. High-degree
polynomials can lead to oscillations and

overfitting, where the interpolation function
becomes overly sensitive to individual data
points. The complexity and computational
intensity of the interpolation process increase
with the degree of the polynomial used.
Therefore, selecting an appropriate
polynomial degree becomes crucial in
balancing the need to capture the data's
essential behavior while avoiding overfitting.
In practice, when more flexibility and
robustness are required in spatial data
interpolation, other methods such as spline
interpolation or kriging are commonly
employed. These techniques provide more
adaptive and smoother interpolations, making
them suitable for datasets with noise or
outliers. By considering the specific
characteristics of the dataset, researchers can
choose the most appropriate interpolation
method to achieve an accurate and reliable
estimation of values between data points.
3.3 Radial basis function (RBF)

Radial Basis Function (RBF) is a versatile
mathematical function widely utilized for
interpolation, approximation, and smoothing
of data, especially in scenarios involving
scattered data points in multidimensional
space. The core concept behind RBF (Singh
and Sarma, 2023; Othmani et al., 2023)
involves approximating a complex function
by a combination of simple functions known
as basis functions, which exhibit decaying
behavior with distance from the center point.
The popularity of radial basis functions lies in
their flexibility and adaptability to complex
and irregular data patterns. These functions
offer smooth and continuous interpolation,
even in high-dimensional spaces, making
them well-suited for various applications.
RBF interpolation finds extensive use in data
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smoothing, image processing, computer
graphics, and numerical solutions of partial
differential equations. By employing RBF,
researchers can effectively handle problems
with scattered data and achieve accurate
estimations (Molla et al., 2023) and
approximations in multidimensional space.
The ability of radial basis functions to capture
intricate data relationships and provide
seamless interpolation makes them a valuable
tool in data analysis and various
computational fields.
3.4 Local polynomial interpolation (LPI)

Local polynomial interpolation (LPI) is an
interpolation method (Fischer, 2019)
designed to estimate values between known
data points by fitting a polynomial function to
a small subset of nearby data points. Unlike
global polynomial interpolation (GPI), which
considers the entire dataset to create a single
polynomial function, LPI adapts the
interpolation model for each target point
based on its neighboring data points. In LPI,
the key idea is to construct a polynomial
function that better approximates the data
around each target point by using a weighted
average of nearby data points. The
polynomial is usually of a low degree, such as
linear or quadratic, to ensure smoothness and
prevent overfitting. Each data point in the
neighborhood of the target point is assigned a
weight based on its distance from the target
point. A kernel function is typically employed
for this weighting, giving more weight to
points closer to the target and less weight to
points farther away. For each target point, a
polynomial function, such as linear or
quadratic, is fitted to the weighted subset of
nearby data points using weighted least
squares or other regression techniques. This

approach (Wang and Liu, 2023) allows LPI to
adapt to the changing data behavior more
effectively, making it particularly useful for
datasets with spatial or temporal
heterogeneity, where the underlying data
pattern varies across different regions or
periods. Local polynomial interpolation finds
widespread application in spatial data
analysis, geostatistics, and time series
analysis, where capturing local variations is
crucial for accurate predictions and
interpolation. However, the choice of the
bandwidth parameter (defining the size of the
neighborhood) and the degree of the local
polynomial can significantly impact the
quality of the interpolation. Hence, careful
selection of these parameters is essential to
achieving reliable and precise interpolation
results.
4. The geostatistical way

Geostatistical methods (Othmani et al.,
2023; Rajalakshimi et al., 2023; Lu et al.,
2022; Gangopadhyay and Reddy, 2022)
comprise a set of statistical techniques
specifically designed to analyze and model
spatially correlated data. These methods hold
significant value for applications in geology,
environmental science, mining, agriculture,
and other fields where data is collected across
different geographic locations. Geostatistics
takes into account the spatial dependence or
autocorrelation that may exist in the data,
enabling more accurate predictions and
interpolation of values at unsampled locations.
The primary objectives of geostatistical
methods are to create spatial maps, identify
spatial patterns, estimate values at unsampled
locations, and quantify uncertainty in
predictions (Figure 4). By considering the
spatial relationships between data points,
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geostatistical approaches deliver robust and
reliable results for decision-making in various
fields that heavily rely on spatial data analysis
and prediction. Key geostatistical techniques
(Dongare et al., 2022; Gangopadhyay and
Reddy, 2022; Khan et al., 2021) include
spatial autocorrelation, variogram analysis,
kriging (including ordinary kriging and
universal kriging), co-kriging, and
geostatistical simulation (Figure 1). These
methods play crucial roles in understanding
spatial patterns, predicting unknown values,
and managing spatially distributed resources
effectively. Overall, geostatistical methods
provide powerful tools for handling spatial
data, enabling data-driven decision-making,
and facilitating informed actions in diverse
fields where spatial analysis and prediction
are vital. This comprises kriging, co-kriging,
areal interpolation and empirical bayesian
kriging.
4.1 Kriging

Kriging is a powerful geostatistical (Reza
et al., 2016; Rajalakshimi et al., 2023;
Mondal et al., 2021) interpolation method
that delivers the best linear unbiased estimate
of a variable at unsampled locations (Singh
and Sarma, 2020). It incorporates both spatial
correlation and uncertainty in the data,
making it a robust and reliable interpolation
technique. The fundamental principle
underlying Kriging (Khan et al., 2021;
Kingsley et al., 2019; Openshaw and Clark,
2019) is to minimize prediction error by
assigning appropriate weights to neighboring
data points based on their spatial distance and
correlation. The Kriging method assumes that
the spatial correlation in the data can be
modeled using a variogram (or
semivariogram). This variogram describes

how the variance of the variable changes with
the distance between data points. By using
the variogram model, Kriging can provide a
continuous and spatially smooth surface,
allowing for accurate estimation at unsampled
locations. A notable advantage of Kriging is
its ability to quantify the uncertainty in
predictions. The method produces an
estimation variance that indicates the level of
uncertainty associated with the estimated
values, providing valuable insights into the
reliability of the predictions. Various variants
of Kriging, including ordinary Kriging,
simple Kriging, and universal Kriging, offer
different levels of assumptions and
complexity. Among these, ordinary Kriging is
the most widely used approach for generating
spatial variability maps of soil properties due
to its superior performance compared to other
approaches. In summary, Kriging is a highly
effective geostatistical method that accounts
for spatial correlation and uncertainty,
enabling precise and reliable estimation of
values at unsampled locations. Its ability to
generate smooth surfaces and provide
uncertainty measures makes it a popular
choice for various applications in geology,
environmental science, agriculture, and more.
4.2 Co-Kriging

Co-Kriging is an extension of the
traditional Kriging method used for the
simultaneous interpolation of two or more
correlated variables. It is particularly
beneficial when there is a spatial correlation
between multiple variables, and utilizing this
correlation can enhance the accuracy of the
estimates. Co-Kriging becomes valuable in
situations where two or more variables
exhibit spatial relationships, and it can
provide more precise predictions compared to
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using Kriging independently, especially when
data for one variable is sparse or missing.
Both Kriging and Co-Kriging are powerful
tools for spatial interpolation, enabling the
estimation of values at unsampled locations
while taking into account spatial correlation
and uncertainty.

The choice between Kriging (Singh and
Sarma, 2020) and Co-Kriging depends on the
characteristics of the data and the presence of
multiple correlated variables. When multiple
correlated variables are available, Co-Kriging
can leverage the spatial relationship between
them to improve the interpolation results. In
summary, Co-Kriging is a valuable
geostatistical technique that extends the
capabilities of traditional Kriging by allowing
for the joint estimation of multiple correlated
variables.
4.3 Areal interpolation

Areal interpolation, also known as areal
weighting or areal disaggregation, is a
technique used to estimate and redistribute
data from one set of areal units to another set
of non-overlapping areal units. The purpose
of areal interpolation is to harmonize spatial
data (Dongare et al., 2022; Bangroo et al.,
2023; Reza et al., 2016) that are available at
different geographic resolutions or
administrative boundaries. When using areal
interpolation, data representing an entire
geographic area (such as a country, region, or
municipality) is transferred to a different set
of geographic units, which may have different
shapes and sizes. The method involves
redistributing the data based on some
proportional relationship between the areas of
the source and target units. Areal
interpolation methods can vary depending on
the assumptions made about the spatial

relationship between the source and target
units. Common approaches include the areal
weighting method, which redistributes data
based on the proportional overlap of source
and target areas, dasymetric mapping, which
considers additional ancillary data to refine
the interpolation, and spatial interpolation
techniques like Inverse Distance Weighting
(IDW), which use the spatial proximity of
data points for redistribution. Areal
interpolation is essential for various
applications (Zakeri and Mariethoz, 2021),
such as harmonizing data from different
sources, aggregating data to a common
geographic scale, and generating consistent
spatial datasets for analysis and modeling
across different geographic units. It finds
extensive use in fields such as geography,
demography, environmental science, and
regional planning, where harmonizing and
integrating spatial data from diverse sources
is crucial for accurate analysis and decision-
making.
4.4 Empirical Bayesian kriging (EBK)

Empirical Bayesian kriging (EBK) is an
advanced geostatistical interpolation method
that combines the principles of kriging and
Bayesian statistics to estimate values at
unsampled locations. This technique is an
extension of traditional kriging and offers
several advantages by incorporating external
information about the spatial variability of the
data. In traditional kriging, the variogram
model, which measures spatial correlation, is
assumed to be known or directly estimated
from the data. However, in empirical
Bayesian kriging, the variogram model
parameters are treated as random variables
and estimated using additional data called the
"drift" or "external drift" data. This approach



Journal of soil, plant and Environment Singh and Sarma

www.jspae.com 92

provides greater flexibility in modeling
spatial correlation since variogram
parameters are estimated instead of assumed.
Empirical Bayesian kriging delivers more
reliable uncertainty estimates by considering
variogram uncertainty in the interpolation
process. It can handle situations where the
spatial variability of the data varies across
different regions, making it adaptable to
complex datasets. However, empirical
Bayesian kriging requires the availability of
external drift data, which may not always be
readily obtainable, and it may be more
computationally intensive compared to
traditional kriging. Empirical Bayesian
kriging finds common application in
geostatistics (Lu et al., 2022), spatial data
analysis, and environmental modeling
(Mondal et al., 2021), particularly when
auxiliary information is available to enhance
interpolation accuracy and uncertainty
estimates. This method is particularly useful
for large datasets or situations where data are
collected at different spatial scales, providing
a powerful tool for spatial data analysis and
prediction in various fields.
5. Method of Interpolation with Barriers

The Method of Interpolation with Barriers,
also known as constrained interpolation, is a
spatial interpolation technique that takes
barriers or constraints into account during the
interpolation process. Barriers refer to areas
in a geographic space where data values are
not continuous or where the underlying
phenomenon being interpolated is interrupted
or discontinuous. The primary objective of
interpolation with barriers is to generate a
smooth and continuous surface while
respecting the presence of barriers and
avoiding interpolation across them. This is

particularly important in situations where the
data or phenomenon being interpolated
should not be assumed to be continuous over
certain regions. Interpolation with barriers
becomes especially useful when certain
geographic features act as physical
boundaries, such as rivers (Lu et al., 2022),
mountains, or land use boundaries (Nagaraj et
al., 2023; Othmani et al., 2023). It is essential
to consider these barriers when estimating
values at unsampled locations to ensure
accurate and realistic results. This method
finds application in various fields, including
environmental modeling, hydrology, urban
planning, and natural resource management.
By incorporating spatial constraints,
interpolation with barriers helps create more
reliable and accurate interpolation results,
avoiding unrealistic interpolation across
physical barriers and providing a better
representation of the underlying spatial
patterns and variations.
5.1 Kernel smoothing

Kernel smoothing, also known as kernel
regression (AbdelRahman et al., 2020; Zakeri
and Mariethoz, 2021) or kernel density
estimation, is a non-parametric statistical
technique widely used to estimate the
underlying smooth pattern of a dataset. This
method is commonly applied in data analysis
and visualization to reduce noise, reveal
underlying trends, and estimate probability
density functions for continuous data. The
fundamental concept behind kernel
smoothing is to approximate the values of a
function at a specific point by averaging the
observed data points, weighted by their
distance to that point. The weights are
determined by a kernel function, which is a
symmetric, non-negative function that
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decreases as the distance from the point of
interest increases. The kernel function acts as
a smoothing window, and its choice impacts
the smoothness of the resulting estimate.
Kernel smoothing finds applications in
various fields, including signal processing,
geostatistics, image processing, and
environmental science. It is particularly
advantageous because it does not assume a
specific parametric model, making it flexible
and versatile for handling complex patterns
and noisy data. However, selecting an
appropriate kernel function and bandwidth
parameter is crucial to obtain meaningful and
accurate results in kernel smoothing. The
bandwidth parameter controls the width of
the smoothing window and influences the
level of smoothing applied to the data. Cross-
validation (Gökmen et al., 2023; Kingsley et
al., 2019; Bangroo et al., 2023) techniques are
often used to optimize the bandwidth
selection for a specific dataset and application,
ensuring that the resulting estimates are
reliable and well-suited to the data
characteristics. In conclusion, kernel
smoothing is a powerful non-parametric
technique that allows for the estimation of
smooth patterns in data without making
strong assumptions about the underlying
model. Its flexibility and versatility make it a
valuable tool in various fields for data
analysis, noise reduction, and probability
density estimation. Properly selecting the
kernel function and bandwidth parameter is
essential to ensuring the accuracy and
meaningfulness of the smoothed estimates.
5.2 The diffusion kernel

The diffusion kernel, also known as the
heat kernel or Gaussian kernel, is a specific
type of kernel function employed in various

mathematical and computational methods,
such as machine learning, graph theory, and
image processing. Its name originates from its
connection to the heat equation in physics,
where it represents the diffusion of heat over
time. The diffusion kernel is constructed
based on a similarity matrix derived from the
dataset using techniques like the Gaussian
similarity function. This similarity matrix
measures the similarity or closeness between
data points. The diffusion kernel finds
application in diverse areas, including graph-
based machine learning, dimensionality
reduction, image processing, and spectral
clustering. It serves as a potent and versatile
tool for capturing the intrinsic structure and
relationships in complex datasets (Zakeri and
Mariethoz, 2021) and graphs. One of the key
advantages of the diffusion kernel is its
ability to handle both local and global
information diffusion, making it valuable for
tasks where understanding relationships
between data points at different scales is
crucial. Overall, the diffusion kernel is a
powerful and flexible approach widely used
in data analysis and machine learning tasks
due to its capacity to capture complex
relationships and patterns within datasets and
graphs. Its association with the heat equation
adds to its significance in various fields,
making it an essential tool in diverse
applications.
6. Limitations and challenges

The spatial analysis also comes with
certain limitations which preferably include:
Limited data: For reliable predictions,
geostatistical approaches require a significant
number of soil samples. Data that is sparse or
inadequately dispersed might lead to
uncertainty and less reliable outcomes.
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Data accuracy and quality: The accuracy
and quality of soil samples might have an
impact on the dependability of geostatistical
analysis. It is critical to ensure data quality
through adequate sampling practices and data
validation.
Outliers: Outlier data points can have a
substantial impact on the findings of
variogram modeling and interpolation.
Outliers must be identified and handled
correctly to ensure the robustness of the
analysis.
Assumptions of stationar ity: Geostatistical
techniques make the assumption that the
spatial dependence of soil characteristics
remains constant over the whole study region.
However, the spatial correlation may vary
across the region, putting doubt on the
hypothesis of stationarity.
Model selection: Selecting appropriate
variogram models and interpolation
techniques can be a difficult process. The
selection of models and approaches has a
considerable impact on the accuracy of
predictions and interpretations.
Extrapolation: Making predictions outside
of the range of the collected data might be
erroneous and result in inaccurate conclusions.
Predictions should be used with caution to
avoid overestimation.
Prediction uncer tainty: Geostatistical
forecasts are subject to intrinsic uncertainty.
Understanding and quantifying uncertainty is
critical for making informed prediction-based
decisions.
Scale and resolution: The scale of the study
affects geostatistical analysis. The resolution
of spatial data might affect the conclusions,
and findings at one scale may not hold true at

another.
Anisotropy: Anisotropy occurs when the
spatial structure of soil characteristics
exhibits distinct patterns in various directions.
Including anisotropy in variogram modeling
can be difficult and may necessitate
additional considerations.
Spatial bias: Spatial data may suffer from
sampling bias, in which specific portions of
the dataset are overfit or underfit. The
representativeness of the forecasts can be
influenced by spatial bias.
7. Study outlook

Several possible breakthroughs and
developments (Parker, 2023) in the field of
spatial modeling for environmental factors
are likely to alter the way of comprehension
and analysis of spatial data. Future
developments will most likely focus on
incorporating temporal aspects into spatial
models, allowing researchers to investigate
how environmental variables change over
time. Remote sensing technological
advancements are enabling the collection of
high-resolution and multi-spectral data. This
allows for more accurate and realistic
depictions of environmental parameters such
as land cover, temperature, and vegetation.

Machine learning and deep learning
algorithms can extract patterns from this data
and use them to create more accurate spatial
models. Combining various types of data and
modeling approaches, such as simulation
models and observational data, will result in a
more comprehensive understanding of
environmental processes. Hybrid models will
require improved statistical methodologies to
successfully blend varied data sources.
Machine learning algorithms (Mousavi et al.,
2023) used with spatial data will provide
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more accurate and interpretable models.
Spatial convolutional neural networks (CNNs)
and graph-based machine learning techniques
will be utilized to utilize complex spatial
patterns in environmental data.
8. Future perception
Geostatistical methods are more
environmentally friendly than traditional
approaches as they optimize resource
utilization with minimum waste generation,
reduce the environmental effect, and deliver
more accurate solutions. Geostatistical
approaches can uncover geographical patterns
(Parker, 2023) and trends in environmental
data, allowing for early detection of
environmental changes or abnormalities
(Figure 5). This enables immediate mitigation
efforts, reducing potential harm to
ecosystems and minimizing long-term
consequences. It can also help discover
appropriate locations (site suitability studies)
for renewable energy installations such as
solar panels and wind turbines, maximizing
energy production while minimizing
environmental impact. It also helps to
improve climate modeling accuracy by
including spatial variability (Wang, 2023).
This enables more accurate predictions of
climate-related variables, which aids in
assessing the implications of climate change
and guiding adaptation efforts. Generally,
traditional approaches may yield accurate
answers without the added complexity of
spatial modeling in circumstances where data
is abundant and spatial patterns are not
prominent. Spatial models, on the other hand,
are likely to exceed traditional methods in
terms of accuracy when dealing with
environmental data that exhibit spatial
autocorrelation, local variability, or irregular

patterns. However, spatial models are used in
environmental monitoring and remediation to
monitor air and water quality, predict
pollutant dispersion, and locate contaminated
areas. They direct effective site remediation
procedures that reduce exposure hazards and
environmental damage. Studies have reported
that the adoption of spatial models has led to
improvements in real-world scenarios. Spatial
models have been used in climate change
studies, seasonal changes mapping (Zhao et
al., 2018), epidemiology (Kieu et al., 2021)
and disease mapping (Abd El-Ghany et al.,
2020), high-risk pollution zones (Jumaah et
al., 2023), deforestation patterns (Coetzee,
2022), identifying regions at risk of soil
erosion, and guiding conservation activities
(Ghute et al., 2023), soil nutrient levels, urban
planning infrastructure development and
resource utilization (Singh and Sarma, 2023).
They are well used for agricultural needs
whether related to fertilizer or irrigation by
minimizing waste and production upsurge.
Spatial models have also estimated the scope
of natural disasters (Khan et al., 2023) such
as floods, landslides, and tsunamis. These
forecasts help early warning systems and
emergency response preparation. They are
also used in energy sector planning,
healthcare planning, and various conservation
methods.
9. Conclusions
Geostatistics has emerged as an indispensable
and versatile tool for understanding spatial
relationships and making accurate predictions
in various scientific fields. In the context of
soil parameter analysis, geostatistics provides
a powerful means to comprehend the spatial
variability of soil properties.
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Figure 5. Basic Applications of Geostatistical Analysis

By identifying spatial patterns and
quantifying uncertainties, geostatistics
facilitates informed decision-making for
sustainable land management and
environmental applications. The key to
harnessing the full potential of geostatistics
lies in careful data collection, preprocessing,
and validation. Ensuring the accuracy and
reliability of results requires diligent attention
to data quality and representative sampling
techniques. By capitalizing on the spatial
autocorrelation inherent in natural
phenomena, geostatistical methods offer
valuable insights that enable effective
management of natural resources,
environmental protection, and informed
decision-making across a broad spectrum of
applications. Nevertheless, it is imperative to
approach geostatistical analyses with caution,
select appropriate models, and account for

uncertainties to ensure robust and trustworthy
results. As technology continues to advance
and data collection techniques improve,
geostatistics will continue to play a vital role
in unraveling the complexities of soil systems
and promoting sustainable land management
practices. In conclusion, geostatistics has
revolutionized spatial data analysis, and its
application in soil parameter analysis holds
immense promise for enhancing our
understanding of soil variability and
supporting evidence-based decision-making
for a sustainable and resilient future.
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