Leaf Litter Decomposition and Associated Nutrient Release Dynamics Under Varying Temperature and Precipitation in a South Asian Tropical Forest

Authors

  • Tania Sultana Institute of Forestry and Environmental Sciences, University of Chittagong. Chittagong-4331, Bangladesh. https://orcid.org/0000-0003-4511-0337
  • Mohammed Jashimuddin Institute of Forestry and Environmental Sciences, University of Chittagong. Chittagong-4331, Bangladesh. https://orcid.org/0000-0002-7556-042X
  • Md. Habibul Hasan Institute of Forestry and Environmental Sciences, University of Chittagong. Chittagong-4331, Bangladesh. https://orcid.org/0000-0003-4795-8497

DOI:

https://doi.org/10.56946/jspae.v4i1.690

Keywords:

Decay constant, decomposition, leaf litter, nutrient dynamics, temperature, precipitation

Abstract

Litter decomposition plays a vital role in nutrient cycling and maintaining ecosystem functionality, particularly in forested landscapes. However, the decomposition dynamics of common tropical timber species remain underexplored in many regions, including Bangladesh. This study investigated the leaf litter decomposition and associated nutrient (nitrogen, phosphorus, potassium) release patterns of five widely planted timber species, Chukrasia tabularis, Dipterocarpus turbinatus, Hopea odorata, Tectona grandis, and Swietenia macrophylla on the Chittagong University campus. Using the litter bag method, decomposition rates were measured across both dry and wet seasons to assess seasonal variability and environmental influences. The results revealed that Chukrasia tabularis exhibited the highest mass loss (33% in the dry season and 60% in the wet season), followed by Hopea odorata (38% and 55%), while Tectona grandis showed the lowest decomposition rates (23% and 25%). Decomposition was most rapid in Hopea odorata during the dry season (0.57 g/month) and Dipterocarpus turbinatus in the wet season (0.89 g/month). In the wet season, decomposition rates were significantly (p < 0.05) correlated with temperature and precipitation across all species. In contrast, during the dry season, only Tectona grandis and Hopea odorata showed significant correlations with temperature, while only Chukrasia tabularis and Hopea odorata were significantly influenced by precipitation. Nutrient release patterns varied by species and nutrient type: nitrogen release was highest in Chukrasia tabularis (26.89 mg/g), phosphorus in Hopea odorata (16.53 mg/g), and potassium in Dipterocarpus turbinatus (53.53 mg/g), whereas Swietenia macrophylla consistently showed the lowest nutrient release rates. These findings highlight species-specific and seasonal variations in litter decomposition and nutrient dynamics, offering insights for forest management, species selection, and ecosystem nutrient budgeting in tropical forest plantations.

References

Akhtaruzzaman, M., Roy, S., Mahmud, M. S., & Shormin, T. Soil properties under different vegetation types in Chittagong University campus, Bangladesh. Journal of Forest and Environmental Science. (2020). 36, 133–142.

Akter, N., Gupta, S. S., Sinha, S., & Hossain, M. K. Tree species diversity of Chittagong University campus flora in Bangladesh. Journal of Biodiversity Conservation and Bioresource Management. (2022). 8, 57–72. https://doi.org/10.3329/jbcbm.v8i1.62223

Allen, S.E., Grimshaw, H.M., Parkinson, J.A., Quarmby, C. and Roberts, J.D. (1974) Chemical Analysis of Ecological Materials. Blackwell Scientific Publications, Osney, Oxford and London.

Averill, C., & Waring, B. Nitrogen limitation of decomposition and decay: how can it occur? Global Change Biology. (2018). 24, 1417–1427. https://doi.org/10.1111/gcb.13980

Berg, B., & McClaugherty, C. Decomposition as a process—some main features. In: Berg, B., & McClaugherty, C. (Eds.), Plant Litter: Decomposition, Humus Formation, Carbon Sequestration. Springer International Publishing, Cham. (2020). pp. 13–43. https://doi.org/10.1007/978-3-030-59631-6_2

Berhe, A. A., Barnes, R. T., Six, J., & Marín-Spiotta, E. Role of soil erosion in biogeochemical cycling of essential elements: carbon, nitrogen, and phosphorus. Annual Review of Earth and Planetary Sciences. (2018). 46, 521–548. https://doi.org/10.1146/annurev-earth-082517-010018

Bradford, M. A., Berg, B., Maynard, D. S., Wieder, W. R., & Wood, S. A. Understanding the dominant controls on litter decomposition. Journal of Ecology. (2016). 104(1), 229–238. https://doi.org/10.1111/1365-2745.12507

Chakravarty, S., Ghosh, S. K., Shukla, G., & Tiwari, A. K. Litter production and decomposition in tropical forest. In: Handbook of Research on the Conservation and Restoration of Tropical Dry Forests. IGI Global. (2020). pp. 193–212. https://doi.org/10.4018/978-1-7998-0014-9.ch010

Dalmolin, Â. C., Dalmagro, H. J., Lobo, F. A., Ortíz, C. E. D., & Vourlitis, G. L. Is the dry season an important driver of phenology and growth for two Brazilian savanna tree species with contrasting leaf habits? Plant Ecology. (2015). 216(3), 407–417. https://doi.org/10.1007/s11258-014-0445-5

Dash, P. K., Goswami, M., Chakrabarti, A., & Jha, C. S. Environmental constraints’ sensitivity of soil organic carbon decomposition to temperature, management practices and climate change. Ecological Indicators. (2019). 107, 105644. https://doi.org/10.1016/j.ecolind.2019.105644

Delgado-Baquerizo, M., Maestre, F. T., Gallardo, A., Bowker, M. A., Wallenstein, M. D., Quero, J. L., et al. Soil characteristics determine soil carbon and nitrogen availability during leaf litter decomposition regardless of litter quality. Soil Biology and Biochemistry. (2015). 81, 134–142. https://doi.org/10.1016/j.soilbio.2014.11.009

Fang, X., Liu, G., Zhou, G., Zhang, D., & Zhou, L. Increased litter input increases litter decomposition and soil respiration but has minor effects on soil organic carbon in subtropical forests. Plant and Soil. (2015). 392(1), 139–153. https://doi.org/10.1007/s11104-015-2450-4

Giweta, M. Role of litter production and its decomposition, and factors affecting the processes in a tropical forest ecosystem: A review. Journal of Ecology and Environment. (2020). 44(1), 1–9. https://doi.org/10.1186/s41610-020-0151-2

Hasanuzzaman, M. D., & Hossain, M. Nutrient return through leaf litter decomposition of common cropland agroforest tree species of Bangladesh. International Research Journal of Biological Sciences. (2014). 3(8), 82–88.

Hasanuzzaman, M., Hossain, M., & Saroar, M. Floristic composition and management of cropland agroforest in southwestern Bangladesh. Journal of Forestry Research. (2014). 25(3), 597–604. https://doi.org/10.1007/s11676-014-0451-4.

Hasanuzzaman, M.D., & Hossain, M. Leaf litter decomposition and nutrient dynamics associated with common cropland agroforest timber tree species of Bangladesh. Agriculture & Forestry. (2015). 61. https://doi.org/10.17707/AgricultForest.61.2.11

Hasanuzzaman, M., & Hossain, M. Leaf litter decomposition and nutrient dynamics associated with common horticultural cropland agroforest tree species of Bangladesh. International Journal of Forestry Research. (2014). 2014, 1–10. https://doi.org/10.1155/2014/805940.

Hasanuzzaman, M.D., & Mahmood, H. Nutrient return through leaf litter decomposition of common cropland agroforest tree species of Bangladesh. International Research Journal of Biological Sciences. (2014). 3(12), 82–88. https://doi.org/10.1155/2014/805940

Hossain, M., Siddique, M.R.H., Abdullah, S.M.R., Saha, S., Ghosh, D.C., Rahman, M.S., & Limon, S.H. Nutrient dynamics associated with leaching and microbial decomposition of four abundant mangrove species leaf litter of the Sundarbans, Bangladesh. Wetlands. (2014). 34(3), 439–448. https://doi.org/10.1007/s13157-013-0510-1.

Hossain, M., Siddique, M.R.H., Rahman, M.S., Hossain, M.Z., & Hasan, M.M. Nutrient dynamics associated with leaf litter decomposition of three agroforestry tree species (Azadirachta indica, Dalbergia sissoo, and Melia azedarach) of Bangladesh. Journal of Forestry Research. (2011). 22(4), 577–582. https://doi.org/10.1007/s11676-011-0175-7.

Hossain, M., Siddique, M.R.H., Saha, S., & Abdullah, S.M.R. Allometric models for biomass, nutrients and carbon stock in Excoecaria agallocha of the Sundarbans, Bangladesh. Wetlands Ecology and Management. (2015). 23(5), 765–774. https://doi.org/10.1007/s11273-015-9419-1.

Hossain, M.Z., Hussaini, S.M., Kashem, M.A., Hasan, M.M., & Khan, M.A.A. Litter quality and nitrogen mineralization of dominant tree species in the Ratargul swamp forests, Bangladesh. International Journal of Ecology and Environmental Sciences. (2020). 46(3–4), 195–201.

Islam, A.K.M.N., Jamali, T., & Hoque, A.E. Litterfall decomposition of selected plant species and nutrient cycling in Madhupur Sal (Shorea robusta Roth) forest of Bangladesh. In: Microbes in Land Use Change Management. (2021). Elsevier, pp. 173–195.

Kamruzzaman, M., Basak, K., Paul, S.K., Ahmed, S., & Osawa, A. Litterfall production, decomposition and nutrient accumulation in Sundarbans mangrove forests, Bangladesh. Forest Science and Technology. (2019). 15(1), 24–32. https://doi.org/10.1080/21580103.2018.1557566.

Keerthika, A., Parthiban, K.T., Chavan, S.B., Shukla, A.K., Gupta, D.K., & Venkatesh, V. Leaf litter decomposition in different tree species of multifunctional agroforestry: decay constant and initial litter chemistry. Environment, Development and Sustainability. (2024). https://doi.org/10.1007/s10668-024-04536-2.

Kibriya, M.A., Saha, S., Siddique, M.R.H., & Hossain, M. Nutrient dynamics in soil associated with leaf litter of Shorea robusta Gaertn. f. in Madhupur Sal forest of Bangladesh. Khulna University Studies. (2019). 16, 1–8.

Kooch, Y., Samadzadeh, B., & Hosseini, S.M. The effects of broad-leaved tree species on litter quality and soil properties in a plain forest stand. CATENA. (2017). 150, 223–229. https://doi.org/10.1016/j.catena.2016.11.023.

Krishna, M.P., & Mohan, M. Litter decomposition in forest ecosystems: a review. Energy, Ecology and Environment. (2017). 2(4), 236–249. https://doi.org/10.1007/s40974-017-0064-9.

Kwon, T., Shibata, H., Kepfer-Rojas, S., Schmidt, I.K., Larsen, K.S., Beier, C., Berg, B., Verheyen, K., Lamarque, J.-F., Hagedorn, F., Eisenhauer, N., Djukic, I., & TeaComposition Network. Effects of climate and atmospheric nitrogen deposition on early to mid-term stage litter decomposition across biomes. Frontiers in Forests and Global Change. (2021). 4, 678480. https://doi.org/10.3389/ffgc.2021.678480.

Luo, Y., Chen, Y., Peng, Q., Li, K., Mohammat, A., & Han, W. Nitrogen and phosphorus resorption of desert plants with various degree of propensity to salt in response to drought and saline stress. Ecological Indicators. (2021). 125, 107488. https://doi.org/10.1016/j.ecolind.2021.107488.

Mia, M.N., Hasan, M.K., & Islam, K.K. Geochemical analysis of forest floor leaf litters of Madhupur Sal forest of Bangladesh. Fundamental and Applied Agriculture. (2016). 1(1), 23–27.

Naik, S.K., Maurya, S., Mukherjee, D., Singh, A.K., & Bhatt, B.P. Rates of decomposition and nutrient mineralization of leaf litter from different orchards under hot and dry sub-humid climate. Archives of Agronomy and Soil Science. (2018). 64(4), 560–573. https://doi.org/10.1080/03650340.2017.1362104.

Akhtaruzzaman, M., Roy, S., Mahmud, M. S., & Shormin, T. (2020). Soil properties under different vegetation types in Chittagong University Campus, Bangladesh. Journal of Forest and Environmental Science, 36, 133–142.

Akter, N., Gupta, S. S., Sinha, S., & Hossain, M. K. (2022). Tree species diversity of Chittagong University Campus flora in Bangladesh. Journal of Biodiversity Conservation and Bioresource Management, 8(1), 57–72. https://doi.org/10.3329/jbcbm.v8i1.62223

Allen, S. E. (1974). Chemical analysis of ecological materials. Blackwell Scientific Publications.

Averill, C., & Waring, B. (2018). Nitrogen limitation of decomposition and decay: How can it occur? Global Change Biology, 24(4), 1417–1427. https://doi.org/10.1111/gcb.13980

Berg, B., & McClaugherty, C. (2020). Decomposition as a process—Some main features. In B. Berg & C. McClaugherty (Eds.), Plant litter: Decomposition, humus formation, carbon sequestration (pp. 13–43). Springer International Publishing. https://doi.org/10.1007/978-3-030-59631-6_2

Berhe, A. A., Barnes, R. T., Six, J., & Marín-Spiotta, E. (2018). Role of soil erosion in biogeochemical cycling of essential elements: Carbon, nitrogen, and phosphorus. Annual Review of Earth and Planetary Sciences, 46, 521–548. https://doi.org/10.1146/annurev-earth-082517-010018

Bradford, M. A., Berg, B., Maynard, D. S., Wieder, W. R., & Wood, S. A. (2016). Understanding the dominant controls on litter decomposition. Journal of Ecology, 104(1), 229–238. https://doi.org/10.1111/1365-2745.12507

Chakravarty, S., Rai, P., Vineeta, Pala, N. A., & Shukla, G. (2020). Litter production and decomposition in tropical forest. In Handbook of research on the conservation and restoration of tropical dry forests (pp. 193–212). IGI Global. https://doi.org/10.4018/978-1-7998-0014-9.ch010

Dalmolin, Â. C., de Almeida Lobo, F., Vourlitis, G., Silva, P. R., Dalmagro, H. J., Antunes, M. Z., & Ortíz, C. E. R. (2015). Is the dry season an important driver of phenology and growth for two Brazilian savanna tree species with contrasting leaf habits? Plant Ecology, 216(3), 407–417. https://doi.org/10.1007/s11258-014-0445-5

Dash, P. K., Bhattacharyya, P., Roy, K. S., Neogi, S., & Nayak, A. K. (2019). Environmental constraints’ sensitivity of soil organic carbon decomposition to temperature, management practices and climate change. Ecological Indicators, 107, 105644. https://doi.org/10.1016/j.ecolind.2019.105644

Delgado-Baquerizo, M., García-Palacios, P., Milla, R., Gallardo, A., & Maestre, F. T. (2015). Soil characteristics determine soil carbon and nitrogen availability during leaf litter decomposition regardless of litter quality. Soil Biology and Biochemistry, 81, 134–142. https://doi.org/10.1016/j.soilbio.2014.11.009

Fang, X., Zhao, L., Zhou, G., Huang, W., & Liu, J. (2015). Increased litter input increases litter decomposition and soil respiration but has minor effects on soil organic carbon in subtropical forests. Plant and Soil, 392(1), 139–153. https://doi.org/10.1007/s11104-015-2450-4

Giweta, M. (2020). Role of litter production and its decomposition, and factors affecting the processes in a tropical forest ecosystem: A review. Journal of Ecology and Environment, 44(1), 1–9. https://doi.org/10.1186/s41610-020-0151-2

Hasanuzzaman, M., & Hossain, M. (2015). Leaf litter decomposition and nutrient dynamics associated with common cropland agroforest timber tree species of Bangladesh. Agriculture and Forestry (Šumarstvo), 61(4), 155–165.

Hasanuzzaman, M., & Hossain, M. (2014). Leaf litter decomposition and nutrient dynamics associated with common horticultural cropland agroforest tree species of Bangladesh. International Journal of Forestry Research, 2014, 1–10. https://doi.org/10.1155/2014/805940

Hasanuzzaman, M., Hossain, M., Abdullah, S. R., Shaikh, M. A.-A., Haque, M. Z., & Nasrin, S. (2014). Mass loss and nutrient dynamics associated with green leaf leaching of cropland agroforest tree species of Bangladesh. Poljoprivreda i Šumarstvo, 60(3), 137.

Hossain, M., Siddique, M. R. H., Abdullah, S. M. R., Saha, S., Ghosh, D. C., Rahman, M. S., & Limon, S. H. (2014). Nutrient dynamics associated with leaching and microbial decomposition of four abundant mangrove species leaf litter of the Sundarbans, Bangladesh. Wetlands, 34(3), 439–448. https://doi.org/10.1007/s13157-013-0510-1

Hossain, M. Z., Hussaini, S. M., Kashem, M. A., Hasan, M. M., & Khan, M. A. A. (2020). Litter quality and nitrogen mineralization of dominant tree species in the Ratargul swamp forests, Bangladesh. International Journal of Ecology and Environmental Sciences, 46(3), 195–201.

Islam, A. K. M. N., Jamali, T., & Hoque, A. E. (2021). Litterfall decomposition of selected plant species and nutrient cycling in Madhupur Sal (Shorea robusta Roth) forest of Bangladesh. In Microbes in land use change management (pp. 173–195). Elsevier. https://doi.org/10.1016/B978-0-12-824448-7.00011-5

Kamruzzaman, M., Basak, K., Paul, S. K., Ahmed, S., & Osawa, A. (2019). Litterfall production, decomposition and nutrient accumulation in Sundarbans mangrove forests, Bangladesh. Forest Science and Technology, 15(1), 24–32. https://doi.org/10.1080/21580103.2018.1557566

Keerthika, A., Parthiban, K. T., Chavan, S. B., Shukla, A. K., Gupta, D. K., & Venkatesh, V. (2024). Leaf litter decomposition in different tree species of multifunctional agroforestry: Decay constant and initial litter chemistry. Environment, Development and Sustainability. https://doi.org/10.1007/s10668-024-04536-2

Kibriya, M. A., Saha, S., Siddique, M. R. H., & Hossain, M. (2019). Nutrient dynamics in soil associated with leaf litter of Shorea robusta Gaertn. f. in Madhupur Sal forest of Bangladesh. Khulna University Studies, 16(1), 1–8.

Kooch, Y., Samadzadeh, B., & Hosseini, S. M. (2017). The effects of broad-leaved tree species on litter quality and soil properties in a plain forest stand. CATENA, 150, 223–229. https://doi.org/10.1016/j.catena.2016.11.023

Krishna, M. P., & Mohan, M. (2017). Litter decomposition in forest ecosystems: A review. Energy Ecology and Environment, 2(4), 236–249. https://doi.org/10.1007/s40974-017-0064-9

Kwon, T., Shibata, H., Kepfer-Rojas, S., Schmidt, I. K., Larsen, K. S., Beier, C., et al. (2021). Effects of climate and atmospheric nitrogen deposition on early to mid-term stage litter decomposition across biomes. Frontiers in Forests and Global Change, 4, 678480. https://doi.org/10.3389/ffgc.2021.678480

Luo, Y., Chen, Y., Peng, Q., Li, K., Mohammat, A., & Han, W. (2021). Nitrogen and phosphorus resorption of desert plants with various degrees of propensity to salt in response to drought and saline stress. Ecological Indicators, 125, 107488. https://doi.org/10.1016/j.ecolind.2021.107488

Mia, M. N., Hasan, M. K., & Islam, K. K. (2016). Geochemical analysis of forest floor leaf litters of Madhupur Sal forest of Bangladesh. Fundamental and Applied Agriculture, 1(1), 23–27.

Naik, S. K., Maurya, S., Mukherjee, D., Singh, A. K., & Bhatt, B. P. (2018). Rates of decomposition and nutrient mineralization of leaf litter from different orchards under hot and dry sub-humid climate. Archives of Agronomy and Soil Science, 64(4), 560–573. https://doi.org/10.1080/03650340.2017.1362104

Nonghuloo, I. M., Kharbhih, S., Suchiang, B. R., Adhikari, D., Upadhaya, K., & Barik, S. K. (2020). Production, decomposition and nutrient contents of litter in subtropical broadleaved forest surpass those in coniferous forest, Meghalaya. Tropical Ecology, 61(1), 5–12. https://doi.org/10.1007/s42965-020-00065-x

Prescott, C. E., & Vesterdal, L. (2021). Decomposition and transformations along the continuum from litter to soil organic matter in forest soils. Forest Ecology and Management, 498, 119522. https://doi.org/10.1016/j.foreco.2021.119522

Rastogi, M., Verma, S., Kumar, S., Bharti, S., Kumar, G., Azam, K., & Singh, V. Soil Health and Sustainability in the Age of Organic Amendments: A Review. International Journal of Environmental and Climate Change. (2023). 13(10), 2088–2102. https://doi.org/10.9734/ijecc/2023/v13i102870

Singh, L., Thakur, D., Sharma, M. K., & Chawla, A. Dynamics of leaf litter decomposition in the timberline zone of western Himalaya. Acta Oecologica. (2021). 111, 103715. https://doi.org/10.1016/j.actao.2021.103715

Song, P., Zhang, N. L., Ma, K. P., & Guo, J. X. Impacts of global warming on litter decomposition. Shengtai Xuebao Acta Ecologica Sinica. (2014). 34(5), 1327–1339. https://doi.org/10.5846/stxb201210251479

Sultana, T., Hossain, M. Z., Ahmed, A., & Hoque, S. Decomposition and nutrient release of Sal leaf litter as influenced by legume leaf litter of the Sal forests. Dhaka University Journal of Biological Sciences. (2013). 22(2), 183–186.

Suseela, V., & Tharayil, N. Decoupling the direct and indirect effects of climate on plant litter decomposition: Accounting for stress-induced modifications in plant chemistry. Global Change Biology. (2018). 24(3), 1428–1451. https://doi.org/10.1111/gcb.13923

Toffanin, A., Borin, M., & Vellidis, G. Predicting Precision Nitrogen Side-dress Applications for Maize with a Simulation Model. Italian Society of Agronomy, Sustainable Management of Crop Systems. (2019). 16.

Wijas, B. J., Flores-Moreno, H., Allison, S. D., Rodriguez, L. C., Cheesman, A. W., Cernusak, L. A., Clement, R., Cornwell, W. K., Duan, E. S., Eggleton, P., Rosenfield, M. V., Yatsko, A. R., & Zanne, A. E. Drivers of wood decay in tropical ecosystems: Termites versus microbes along spatial, temporal and experimental precipitation gradients. Functional Ecology. (2024). 38(3), 546–559. https://doi.org/10.1111/1365-2435.14494

Xie, Y. A meta-analysis of critique of litterbag method used in examining decomposition of leaf litters. Journal of Soils and Sediments. (2020). 20(5), 1881–1886. https://doi.org/10.1007/s11368-020-02572-9

Zhao, S., & Riaz, M. Plant–Soil Interactions and Nutrient Cycling Dynamics in Tropical Rainforests. In Fahad, S., Saud, S., Nawaz, T., Gu, L., Ahmad, M., & Zhou, R. (Eds.), Environment, Climate, Plant and Vegetation Growth. (2024). Springer Nature Switzerland, Cham, pp. 229–264. https://doi.org/10.1007/978-3-031-69417-2_8.

Downloads

Published

2025-06-15
CITATION
DOI: 10.56946/jspae.v4i1.690

How to Cite

Sultana, T., Jashimuddin, M., & Hasan, M. H. (2025). Leaf Litter Decomposition and Associated Nutrient Release Dynamics Under Varying Temperature and Precipitation in a South Asian Tropical Forest. Journal of Soil, Plant and Environment, 4(1), 94–111. https://doi.org/10.56946/jspae.v4i1.690

Issue

Section

Article

Funding data