The Role of Urban Trees in PM2.5 Mitigation: Air Quality Assessment and Absorption Capacity Comparison in Warsaw Alleys
DOI:
https://doi.org/10.56946/jspae.v4i2.730Keywords:
Air pollution, PM2.5 mitigation, tree canopy cover, urban forestry, vegetation absorptionAbstract
Rapid urbanization is intensifying air pollution across cities worldwide, with fine particulate matter (PM2.5) emerging as one of the most hazardous pollutants to public health. While urban trees are widely recognized for their role in air purification, particularly through pollutant absorption and filtration, most existing studies rely on predictive models such as i-Tree Eco and rarely incorporate direct field-based validation of PM2.5 exposure levels for urban residents. A critical gap remains in understanding the actual distribution of health-threatening PM2.5 concentrations and the localized effectiveness of urban vegetation in mitigating these pollutants. This study addresses this gap by assessing PM2.5 pollution levels and evaluating the particulate matter absorption capacity of urban trees in two street alleys with contrasting tree canopy cover (TCC) in Warsaw, Poland. The research was conducted in two phases: first, PM2.5 concentrations were monitored using dust sensors during peak and post-peak traffic periods; second, the i-Tree Eco model was employed to quantify pollutant uptake by trees at each site. The findings indicate that exceedances of the WHO PM2.5 air quality standard (15 μg/m³) occurred 1.5 times more frequently on streets with only 6% tree canopy cover (TCC), compared to streets with more than 30% TCC. Moreover, the site with optimal TCC, trees demonstrated over 14-fold greater effectiveness in PM2.5 removal. Furthermore, the model has been shown to be statistically significant, meaning that one of the predictors, TCC or DBH, has a significant impact on PM2.5 removal levels. These findings highlight the critical role of tree canopy density in enhancing urban air quality and suggest that sole reliance on modeled estimations without ground-level data may significantly underestimate residents’ exposure to PM2.5. By integrating in-situ pollution monitoring with ecosystem service modeling, this study provides a more accurate assessment of urban trees' capacity to mitigate air pollution. The findings underscore the need for data-driven urban greening policies and offer actionable insights for improving air quality in cities like Warsaw.
References
Akbari, H., Pomerantz, M., & Taha, H. Cool surfaces and shade trees to reduce energy use and improve air quality in urban areas. Solar Energy. (2001). 70(3), 295–310. https://doi.org/10.1016/S0038-092X(00)00089-X
Aslam, B., Maqsoom, A., Khalid, N., Ullah, F., & Sepasgozar, S. Urban overheating assessment through prediction of surface temperatures: A case study of Karachi, Pakistan. ISPRS International Journal of Geo-Information, (2021). 10(8), 539. https://doi.org/10.3390/IJGI10080539
Bass, B. Addressing urban environmental problems with green roofs. Encyclopedia of Global Environmental Change (Vol. 3). John Wiley & Sons, (2001).
Bates, D. V. Ambient ozone and mortality. Epidemiology, (2005). 16(4), 427–429. https://doi.org/10.1097/01.EDE.0000165793.71278.EC
Beckett, K. P., Freer-Smith, P. H., & Taylor, G. Particulate pollution capture by urban trees: Effect of species and windspeed. Global Change Biology, (2000). 6(8), 995–1003. https://doi.org/10.1046/J.1365-2486.2000.00376.X
Beckett, K. P., Freer-Smith, P. H., & Taylor, G. Urban woodlands: their role in reducing the effects of particulate pollution. Environmental Pollution, (1998). 99(3), 347–360. https://doi.org/10.1016/S0269-7491(98)00016-5
Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., Deangelo, B. J., Zender, C. S. Bounding the role of black carbon in the climate system: A scientific assessment. Journal of Geophysical Research: Atmospheres, (2013). 118(11), 5380–5552. https://doi.org/10.1002/JGRD.50171
Bonire, G., & Gbenga-Ilori, A. Towards artificial intelligence-based reduction of greenhouse gas emissions in the telecommunications industry. Scientific African, (2021). 12, e00823. https://doi.org/10.1016/J.SCIAF.2021.E00823
Branea, A.-M., Gaman, M. S., Badescu, S., Mihai-Ionut, D., Stelian, G. M., & Ștefana, B. Challenges regarding the study of urban heat islands: Ruleset for researchers. In Proceedings of the Risk Reduction for Resilient Cities, (2016). https://www.researchgate.net/publication/309740257
Brantley, H. L., Hagler, G. S. W., Deshmukh, P., & Baldauf, R. W. Field assessment of the effects of roadside vegetation on near-road black carbon and particulate matter. Science of The Total Environment, (2014). 468–469, 120–129. https://doi.org/10.1016/J.SCITOTENV.2013.08.001
Brauer, M., Hoek, G., Smit, H. A., de Jongste, J. C., Gerritsen, J., Postma, D. S., Kerkhof, M., & Brunekreef, B. Air pollution and development of asthma, allergy and infections in a birth cohort. European Respiratory Journal, (2007). 29(5), 879–888. https://doi.org/10.1183/09031936.00083406
Bureau, P. R. World Population Highlights: Key findings from PRB’s 2007 World Population Data Sheet. (2007).
Burkhardt, J. Hygroscopic particles on leaves: Nutrients or desiccants? Ecological Monographs, (2010). 80(3), 369–399. https://doi.org/10.1890/09-1988.1
CAFE. Second position paper on particulate matter. CAFE Working Group on Particulate Matter, (2004).
Cavanagh, J. A. E., Zawar-Reza, P., & Wilson, J. G. Spatial attenuation of ambient particulate matter air pollution within an urbanised native forest patch. Urban Forestry & Urban Greening, (2009). 8(1), 21–30. https://doi.org/10.1016/J.UFUG.2008.10.002
Cavanagh, J. Influence of urban trees on air quality in Christchurch: Preliminary estimates. LC0708/097, (2008).
Cen, S. Biological monitoring of air pollutants and its influence on human beings. The Open Biomedical Engineering Journal, (2015). 9(1), 219–223. https://doi.org/10.2174/1874120701509010219
Chen, G., Zhang, W., Li, S., Williams, G., Liu, C., Morgan, G. G., Jaakkola, J. J. K., & Guo, Y. Is short-term exposure to ambient fine particles associated with measles incidence in China? A multi-city study. Environmental Research, (2017). 156, 306–311. https://doi.org/10.1016/J.ENVRES.2017.03.046
Chen, L., Liu, C., Zhang, L., Zou, R., & Zhang, Z. Variation in tree species’ ability to capture and retain airborne fine particulate matter (PM2.5). Scientific Reports, (2017). 7(1), 1–11. https://doi.org/10.1038/s41598-017-03360-1
Chen, S. C., & Liao, C. M. Health risk assessment on humans exposed to environmental polycyclic aromatic hydrocarbons pollution sources. Science of The Total Environment, (2006). 366(1), 112–123. https://doi.org/10.1016/J.SCITOTENV.2005.08.047
Dmuchowski, W., & Badurek, M. Stan zieleni przyulicznej w Warszawie na podstawie wieloletnich obserwacji i doświadczeń Ogrodu Botanicznego–CZRB PAN. Zieleń Warszawy. Problemy i Nadzieje, (2001). 5, 19–32.
Fisher, G., Kjellstrom, T., Woodward, A., Hales, S., Town, I., Sturman, A., Donnelly, P. Health and air pollution in New Zealand: Christchurch pilot study. (2005). https://environment.govt.nz/assets/Publications/Files/Health-and-air-pollution-nz-2005-pilot-study.pdf
Giannico, O. V., Addabbo, F., Catino, F., Bisceglia, L., Minerba, S., Mincuzzi, A., & Sardone, R. The mortality impacts of implementing the 3–30–300 greenness rule in Taranto, Southern Italy. Ecological Indicators, (2025). 178, 113895. https://doi.org/10.1016/j.ecolind.2025.113895
Gong, C., Xian, C., & Ouyang, Z. Assessment of NO2 purification by urban forests based on the i-Tree Eco model: Case study in Beijing, China. Forests, (2022). 13(3), 369. https://doi.org/10.3390/f13030369
Guo, S., Hu, M., Zamora, M. L., Peng, J., Shang, D., Zheng, J., Zhang, R. Elucidating severe urban haze formation in China. Proceedings of the National Academy of Sciences of the USA, (2014). 111(49), 17373–17378. https://doi.org/10.1073/pnas.1419604111
Helbich, M., Browning, M. H. E. M., Voets, D., & Dadvand, P. Adherence to the 3–30–300 urban green space rule and mental health, physical activity, and overweight: A population-based study in the Netherlands. Environment International, (2025). 202, 109643. https://doi.org/10.1016/j.envint.2025.109643
Ho, L., Truong, V., Pham, C., La, V., Dang, H., Nguyen, T., Tran, H. A preliminary study on the benefits of urban parks in Ho Chi Minh City using i-Tree tools. IOP Conference Series: Earth and Environmental Science, (2025). 1465(1), 012007. https://doi.org/10.1088/1755-1315/1465/1/012007
Holnicki, P., Kałuszko, A., Nahorski, Z., & Stankiewicz, K. Air quality modeling for Warsaw agglomeration. Applied Environmental Studies, (2017). 42–64. https://doi.org/10.1515/aep-2017-0005
Hoppa, A., Sikorski, P., Przybysz, A., Łaszkiewicz, E., Nawrocki, A., Archiciński, P., Sikorska, D. Wpływ drzew na jakość powietrza pyłowego: Zniuansowana perspektywa dynamiki zanieczyszczeń w drodze do szkoły. SSRN, (2024). https://ssrn.com/abstract=5173819
IQAir. Air quality and pollution city ranking. World Air Quality, (2022). https://www.iqair.com/world-air-quality-ranking
Iqbal, L. M., Njaim, G. A., Vos, D., & Permana, C. T. H. Parks please! Implementing the 3–30–300 green space rule in developing countries: The case of Surakarta, Indonesia. Urban Forestry & Urban Greening, (2025). 107, 128797. https://doi.org/10.1016/j.ufug.2025.128797
i-Tree Eco User’s Manual. (2019). https://www.itreetools.org/documents/275/EcoV6_UsersManual.2021.04.19.pdf
Jeong, S. J. The impact of air pollution on human health in Suwon City. Asian Journal of Atmospheric Environment, (2013). 7(4), 227–233. https://doi.org/10.5572/AJAE.2013.7.4.227
Kais, K., Gołaś, M., & Suchocka, M. Awareness of air pollution and ecosystem services provided by trees: The case study of Warsaw City. Sustainability, (2021). 13(19), 10611. https://doi.org/10.3390/SU131910611
Konijnendijk, C. C. Evidence-based guidelines for greener, healthier, more resilient neighbourhoods: Introducing the 3–30–300 rule. Journal of Forestry Research, (2023). 34(3), 821–830.
Kołodziej, E. Warsaw 2nd city of the world with the most polluted air. Noizz Ekologia, (2021). https://noizz.pl/ekologia/warszawa-gorsza-niz-kalkuta-jest-na-2-miejscu-miast-z-najgorszym-powietrzem/c3jn196
Krzysztoszek, A., & Jakubowska, J. Poland: After the bout of frost, Warsaw and Wrocław are among the most polluted cities in the world. Euractiv.pl, (2021). https://www.euractiv.pl/section/energia-i-srodowisko/news/mroz-smog-piec-warszawa-wroclaw-zanieczyszczenie-powietrze-miasta/
Lopez, M. A., De Marco, A., Anav, A., Sorrentino, B., Paoletti, E., Manzini, J., Sicard, P. The 3–30–300 rule compliance: A geospatial tool for urban planning. Landscape and Urban Planning, (2025). 261, 105396. https://doi.org/10.1016/j.landurbplan.2025.105396
Majewski, G., Czechowski, P., Badyda, A., & Brandyk, A. Effect of air pollution on visibility in urban conditions: Warsaw case study. Environment Protection Engineering, (2014). https://doi.org/10.5277/epe140204
McDonald, A. G., Bealey, W. J., Fowler, D., Dragosits, U., Skiba, U., Smith, R. I., Nemitz, E. Quantifying the effect of urban tree planting on concentrations and depositions of PM10 in two UK conurbations. Atmospheric Environment, (2007). 41(38), 8455–8467. https://doi.org/10.1016/J.ATMOSENV.2007.07.025
Municipal Road Administration. Analysis of traffic in Warsaw. Traffic Analysis, (2021). https://zdm.waw.pl/dzialania/badania-i-analizy/analiza-ruchu-na-drogach/
Olchonwik, J., Jankowski, P., Suchocka, M., Malewski, T., Wiesiołek, A., & Hilszczańska, D. The impact of anthropogenic transformation of urban soils on ectomycorrhizal fungal communities associated with silver birch (Betula pendula Roth.) growth in natural versus urban soils. Scientific Reports, (2023). 13, 21268. https://doi.org/10.1038/s41598-023-48592-6
Poland in Numbers. The city of Warsaw in numbers: Demographic data. (2020). https://www.polskawliczbach.pl/Warszawa
Popek, R., Przybysz, A., Łukowski, A., Baranowska, M., Bułaj, B., Hauke–Kowalska, M., & Kowalkowski, W. Shields against pollution: Phytoremediation and impact of particulate matter on trees at Wigry National Park, Poland. International Journal of Phytoremediation, (2024). 27(4), 448–461. https://doi.org/10.1080/15226514.2024.2426771
Przybysz, A., Nawrocki, A., Mirzwa-Mróz, E., et al. Gatunkowo-specyficzny wpływ grzybni mączniaka prawdziwego na efektywność akumulacji pyłu zawieszonego przez zieleń miejską. Environmental Science and Pollution Research, (2024). 31, 36163–36173. https://doi.org/10.1007/s11356-023-28371-6
Rasoolzadeh, R., Dinan, N., Esmaeilzadeh, H., Rashidi, Y., & Sadeghi, S. Assessment of air pollution removal by urban trees based on the i-Tree Eco model: The case of Tehran, Iran. Integrated Environmental Assessment and Management, (2024). 20(6), 2142–2152. https://doi.org/10.1002/ieam.4990
Riondato, E., Pilla, F., Basu, A. S., & Basu, B. Investigating the effect of trees on urban air quality in Dublin by combining air monitoring with the i-Tree Eco model. Sustainable Cities and Society, (2020). 61, 102356. https://doi.org/10.1016/j.scs.2020.102356
Russell, A. G., & Brunekreef, B. A focus on particulate matter and health. Environmental Science and Technology, (2009). 43(13), 4620–4625. https://doi.org/10.1021/es9005459
Song, J., Przybysz, A., & Zhu, C. Revealing the contribution of urban green spaces to improving the thermal environment under realistic stressors and their interactions. Sustainable Cities and Society, (2025). 126, 106426. https://doi.org/10.1016/j.scs.2025.106426
Szkop, Z. Evaluating the sensitivity of the i-Tree Eco pollution model to different pollution data inputs: A case study from Warsaw, Poland. Urban Forestry & Urban Greening, (2020). 55, 126859. https://doi.org/10.1016/j.ufug.2020.126859
Trowbridge, P., & Bassuk, N. Trees in the Urban Landscape: Site Assessment, Design and Installation. John Wiley & Sons, (2004).
Témtop. Temtop M2000 handheld air quality detector user manual. (2022). https://manuals.plus/temtop/m2000-handheld-air-quality-detector-manual#axzz7iclgeQSR
Vashist, M., Kumar, T. V., & Singh, S. K. Assessment of air quality benefits of vegetation in an urban-industrial region of India by integrating air monitoring with the i-Tree Eco model. CLEAN – Soil, Air, Water, (2024). 52(7). https://doi.org/10.1002/clen.202300198
Vesuviano, G., Fitch, A., Owen, D., Fletcher, D., & Jones, L. How well does the 3–30–300 rule mitigate urban flooding? Urban Forestry & Urban Greening, (2025). 104, 128661. https://doi.org/10.1016/j.ufug.2024.128661
Wan Mahiyuddin, W. R., Sahani, M., Aripin, R., Latif, M. T., Thach, T. Q., & Wong, C. M. Short-term effects of daily air pollution on mortality. Atmospheric Environment, (2013). 65, 69–79. https://doi.org/10.1016/J.ATMOSENV.2012.10.019
Akbari, H., Pomerantz, M., & Taha, H. Cool surfaces and shade trees to reduce energy use and improve air quality in urban areas. Solar Energy, (2001). 70(3), 295–310. https://doi.org/10.1016/S0038-092X(00)00089-X
Karaczun, Z., & Michalak, W. Impact of climate change and air pollution on the health of Warsaw inhabitants. (2019). https://meinwarschau.com/wp-content/uploads/2019/12/raport-klimatyczny-warszawa-koalicja-klimatyczna.pdf
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.