Ethidium Bromide-Induced Genetic Variability and Drought Tolerance in Cowpea (Vigna unguiculata L. Walp.) Under Field Conditions

Authors

  • Abiola Toyin Ajayi Department of Plant Science and Biotechnology, Adekunle Ajasin University, Akungba-Akoko, Nigeria. https://orcid.org/0000-0002-5678-5818
  • Musibau Emmanuel Momoh Department of Plant Science and Biotechnology, University of Nigeria, Nsukka. https://orcid.org/0009-0006-0857-5070
  • Oloruntoba Emmanuel Oladipo Department of Plant Science and Biotechnology, Adekunle Ajasin University, Akungba-Akoko, Nigeria. https://orcid.org/0009-0008-3199-2221
  • Oluwatoyin Opeoluwa Dada Department of Plant Science and Biotechnology, Adekunle Ajasin University, Akungba-Akoko, Nigeria.
  • Ayomide Aminat Amoo Department of Plant Science and Biotechnology, Adekunle Ajasin University, Akungba-Akoko, Nigeria.

DOI:

https://doi.org/10.56946/jspae.v4i2.605

Keywords:

Cowpea, drought tolerance, drought tolerance indices, ethidium bromide-induced variability, genetic variability

Abstract

Drought stress significantly reduces cowpea yields in Africa, necessitating the development of drought-resilient genotypes. This study evaluated the genetic variability and drought tolerance of nine ethidium bromide (EtBr)-derived cowpea genotypes at the M7 generation under control and drought stress conditions. The study was conducted in a randomized complete block design and assessed morphological and yield traits alongside ten drought tolerance indices (DTIs). Significant effects of genotype and genotype × treatment interactions were observed for most traits, except peduncle length and 100-seed weight. Genotypes G1 and G2 demonstrated superior drought tolerance, reflected by high values for key DTIs such as Geometric Mean Productivity (GMP), Stress Tolerance Index (STI), and Drought Resistance Index (DRI), and consistently maintained higher yields under stress. In contrast, G5 and G7 showed poor performance under drought, with lower yields and DTI values.  Broad-sense heritability was high for important traits, including plant height (84.41%) and seed yield per plant (60.08%), indicating strong genetic control. High genotypic and phenotypic coefficients of variation, particularly for seed yield per plant (GCV: 71.54%, PCV: 92.29%), suggest considerable potential for selection-based improvement. The heatmap analysis revealed that reproductive traits, particularly seed yield, number of pods, and peduncle length, are strongly associated with key DTIs, making them valuable targets for selection under drought stress. These findings underscore the effectiveness of EtBr-induced mutagenesis in generating genetic variability and enhancing drought resilience in cowpea. Future breeding programs should prioritize genotypes like G1 and G2, integrating key drought-related traits and indices to develop high-yielding, climate-resilient cowpea varieties suitable for drought-prone regions in sub-Saharan Africa.

References

Abdou Razakou, I.B., Mensah, B., Addam Kiari, S. and Akromah, R. Using morpho-physiological parameters to evaluate cowpea varieties for drought tolerance. International Journal of Agricultural Science Research. (2013). 2(5), 153-162.

Ahmed, S. F., Ahmed, J. U., Hasan, M. and Mohi-Ud-Din, M. Assessment of genetic variation among wheat genotypes for drought tolerance utilizing microsatellite markers and morpho-physiological characteristics. Heliyon. (2023). 9(11), e21629. https://doi.org/10.1016/j.heliyon.2023.e21629

Ajayi, A.T. Relationships among drought tolerance indices and yield characters of cowpea (Vigna unguiculata L. Walp). International Journal of Scientific Research in Biological Sciences. (2020). 7(5), 93-103.

Ajayi, A.T. Genetic variation, genotype × environment interaction, and correlation among drought tolerance indices in cowpea. International Journal of Science Letters. (2024). 6(1), 377-410.

Ajayi, A.T., Gbadamosi, A.E. and Olumekun, V.O. Screening for drought tolerance in cowpea (Vigna unguiculata L. Walp) at seedling stage under screen house condition. International Journal of Bioscience and Technology. (2018). 11(1), 1-19.

Alfa, A.A., Tijani, K.B., Omotoso, O.D., Junaidu, Y. and Sezor, A.A. Nutritional values and medicinal health aspects of brown, brown-black, and white cowpea (Vigna unguiculata L. Walp.) grown in Okene, Kogi State, Nigeria. Asian Journal of Advanced Research and Reports. (2020). 14, 114-124. https://doi.org/10.9734/ajarr/2020/v14i430348

Anwar, J., Subhani, G. M., Hussain, M., Ahmad, J., Hussain, M. and Munir, M. Drought tolerance indices and their correlation with yield in exotic wheat genotypes. Pakistan Journal of Botany. (2011). 43(3), 1527-1530.

Badu-apraku, B., Obesesan, O., Abiodun, A. and Obeng-bio, E. Genetic gains from selection for drought tolerance during three breeding periods in extra-early maturing maize hybrids under drought and rainfed environments. Agronomy. (2021). 11, 831. https://doi.org/10.3390/agronomy11050831

Batieno, B.J., Tignegre, J.-B., Hamadou, S., Hamadou, Z., Jeremy Ouedraogo, T., Danquah, E. and Ofori, K. Field assessment of cowpea genotypes for drought tolerance. International Journal of Sciences: Basic and Applied Research. (2016). 30(4), 358-369.

Beebe, S.E., Rao, I.M., Blair, M.W. and Acosta-Gallegos, J.A. Phenotyping common beans for adaptation to drought. Frontiers in Physiology. (2013). 4, 1-20. https://doi.org/10.3389/fphys.2013.00035

Bennani, S., Nsarellah, N., Jlibene, M., Tadesse, W., Birouk, A. and Ouabbou, H. Efficiency of drought tolerance indices under different stress severities for bread wheat selection. Australian Journal of Crop Science. (2017). 11(4), 395-405. https://doi.org/10.21475/ajcs.17.11.04.pne272

Bolarinwa, K.A., Ogunkanmi, L.A., Ogundipe, O.T., Agboola, O.O. and Amusa, O.D. An investigation of cowpea production constraints and preferences among smallholder farmers in Nigeria. GeoJournal. (2022). 87, 2993-3005. https://doi.org/10.1007/s10708-021-10405-6

Boukar, O., Belko, N., Chamarthi, S., Togola, A., Batieno, J., Owusu, E., Haruna, M., Diallo, S., Umar, M.L., Olufajo, O. and Fatokun, C. Cowpea (Vigna unguiculata): Genetics, genomics, and breeding. Plant Breeding. (2018). 138, 415-424. https://doi.org/10.1111/pbr.12589

Boukar, O., Fatokun, C.A., Huynh, B., Roberts, P.A. and Close, T.J. Genomic tools in cowpea breeding programs: status and perspectives. Frontiers in Plant Science. (2016). 7, 757. https://doi.org/10.3389/fpls.2016.00757

Bouslama, M. and Schapaugh, W.T. Stress tolerance in soybean I. Evaluation of three screening techniques for heat and drought tolerance. Crop Science. (1984). 24, 933-937. https://doi.org/10.2135/cropsci1984.0011183X002400050026x

Carvalho, M., Lino-Neto, T., Rosa, E. and Carnide, V. Cowpea: a legume crop for a challenging environment. Journal of the Science of Food and Agriculture. (2017). 97(13), 4273-4284. https://doi.org/10.1002/jsfa.8250

Chathuni, J., Rizliya, V., Afka, D., Ruksheela, B., Barana, C.J., Srinivas, N. and Ruvini, L. Cowpea: An overview of its nutritional facts and health benefits. Review Journal of Science for Food and Agriculture. (2018). 13, 4793-4806. https://doi.org/10.1002/jsfa.9074

Chaudhary, J., Deshmukh, R. and Sonah, H. Mutagenesis approaches and their role in crop improvement. Plants. (2019). 8(11), 10-13. https://doi.org/10.3390/plants8110467

Choudhary, R.S., Biradar, D.P. and Katageri, I.S. Evaluation of sorghum RILs for moisture stress tolerance using drought tolerance indices. The Pharma Innovation. (2021). 10(4), 39-45.

Craufurd, P., Qi, A., Summerfield, R.J., Ellis, R.H. and Roberts, E.H. Development in cowpea (Vigna unguiculata). III. Effects of temperature and photoperiod on time to flowering in photoperiod-sensitive genotypes and screening for photothermal responses. Experimental Agriculture. (1996). 32(1), 29-40. https://doi.org/10.1017/S0014479700025825

Ddungu, S.P., Ekere, W., Bisikwa, J., Kawooya, R., Kalule, D.O. and Biruma, M. Marketing and market integration of cowpea (Vigna unguiculata L. Walp) in Uganda. Journal of Development and Agricultural Economics. (2015). 7, 1-11. https://doi.org/10.5897/JDAE2014.0577

Deffo, T.N., Kouam, E.B., Mandou, M.S., Bara, R.A.T., Chotangui, A.H., Souleymanou, A., Djonko, H.B. and Tankou, C.M. Identifying critical growth stage and resilient genotypes in cowpea under drought stress contributes to enhancing crop tolerance for improvement and adaptation in Cameroon. PLoS ONE. (2024). 19(6), 1-25. https://doi.org/10.1371/journal.pone.0304674

Eid, M. and Sabry, S. Assessment of variability for drought tolerance indices in some wheat (Triticum aestivum L.) genotypes. Egyptian Journal of Agronomy. (2019). 41(2), 79-91. https://doi.org/10.21608/agro.2019.10401.1153

Elbath, A. Combining ability and selecting elite faba bean genotypes under drought stress conditions using tolerance indices. Annals of Agricultural Science, Moshtohor. (2023). 61(3), 655-668. https://doi.org/10.21608/assjm.2024.239258.1249

El-Rawy, M.A. and Hassan, M.I. Effectiveness of drought tolerance indices to identify tolerant genotypes in bread wheat (Triticum aestivum L.). Journal of Crop Science and Biotechnology. (2014). 17(4), 255-266. https://doi.org/10.1007/s12892-014-0080-7

El-Refaee, Y.Z., Seadh, S.E., Abdel-Moneam, M.A. and Eltantawy, M.E.M. Determination of drought tolerance indices as selection criteria of rice genotypes under water deficit conditions in Egypt. International Journal of Plant and Soil Science. (2023). 35(13), 192-208. https://doi.org/10.9734/ijpss/2023/v35i133004

Eswaramoorthy, V., Kandasamy, T., Thiyagarajan, K., Vanniarajan, C. and Jegadeesan, S. Effectiveness and efficiency of electron beam in comparison with gamma rays and ethyl methane sulfonate mutagens in cowpea. Applied Radiation and Isotopes. (2021). 171, 109640. https://doi.org/10.1016/j.apradiso.2021.109640

Farshadfar, F. and Sutka, J. Screening drought tolerance criteria in maize. Acta Agronomica Hungarica. (2002). 50(4), 411-416. https://doi.org/10.1556/AAgr.50.2002.4.3

Fatokun, C., Girma, G., Abberton, M., Gedil, M., Unachukwu, N., Oyatomi, O., Yusuf, M., Rabbi, I. and Boukar, O. Genetic diversity and population structure of a mini-core subset from the world cowpea (Vigna unguiculata L. Walp) germplasm collection. Scientific Reports. (2018). 8, 16035. https://doi.org/10.1038/s41598-018-34555-9

Fernandez, G.C.J. Effective selection criteria for assessing plant stress tolerance. Proceedings of the Symposium Taiwan. (1992). 2, 257-270.

Gavuzzi, P., Rizza, F., Palumbo, M., Campaline, R.G., Ricciardi G.L. and Borghi, B. Evaluation of field and laboratory predictors of drought and heat tolerance in winter cereals. Canadian Journal of Plant Science. (1997). 77, 523-531. https://doi.org/10.4141/P96-130

Ghanem, H.E. and Al-Farouk, M.O. Wheat drought tolerance: morpho-physiological criteria, stress indexes, and yield responses in newly sand soils. Journal of Plant Growth Regulation. (2024). 43(7), 2234-2250. https://doi.org/10.1007/s00344-024-11259-1

Gomes, A.M.P., Rodrigues, A.L.S., António, C., Rodrigues, A.L.S., Leitão, A.E., Batista-Santos, P., Nhantumbo, N., Massinga, R., Ribeiro-Barros, A.I. and Ramalho, J.C. Drought response of cowpea (Vigna unguiculata (L.)Walp.) landraces at leaf physiological and metabolite profile levels. Environmental and Experimental Botany. (2020). 175, 104060. https://doi.org/10.1016/j.envexpbot.2020.104060

Hall, A.E. Phenotyping cowpeas for adaptation to drought. Frontiers in Physiology. (2012). 3, 1-8. https://doi.org/10.3389/fphys.2012.00155

Horn, L.N., Nghituwamhata, S.N. and Isabella, U. Cowpea production challenges and contribution to livelihood in Sub-Saharan region. Agricultural Sciences. (2022). 13: 25-32. https://doi.org/10.4236/as.2022.131003

Huynh, B., Matthews, W.C., Ehlers, J.D., Lucas, M.R., Santos, J.R., Ndeve, A., Close, T.J. and Roberts, P.A. A major QTL corresponding to the Rk locus for resistance to root-knot nematodes in cowpea (Vigna unguiculata L. Walp.) Theoretical and Applied Genetics. (2016). 129, 87-95. https://doi.org/10.1007/s00122-015-2611-0

Ikram, S., Bhattarai, S. and Walsh, K.B. Screening new mungbean varieties for terminal drought tolerance. Agriculture. (2024). 14(8), 1328. https://doi.org/10.3390/agriculture14081328

Karami, S., Faraji, S., Basaki, T. and Ghanaei, S. Assessment of yield-based drought tolerance indices and physiological traits for screening pomegranate (Punica granatum L.) genotypes. International Journal of Horticultural Science and Technology. (2024). 11(3), 317-329. https://doi.org/10.22059/ijhst.2023.363604.680

Keadtidumrongkul, P., Chirarat, N. and Somran, S. Determination of LD50 of ethidium bromide for induction of mutation in marigolds. Naresuan University Journal: Science and Technology. (2018). 26(4), 80-88.

Kebede, E. and Bekeko, Z. Expounding the production and importance of cowpea (Vigna unguiculata L. Walp) in Ethiopia. Cogent Food and Agriculture. (2020). 6, 1769805. https://doi.org/10.1080/23311932.2020.1769805

Kristin, A.S., Senra, R.R., Perez, F.I., Enriquez, B.C., Gallegos, J.A.A., Vallego, P.R., Wassimi, N. and Kelley, J.D. Improving common bean performance under drought stress. Crop Science. (1997). 37, 43-50. https://doi.org/10.2135/cropsci1997.0011183X003700010007x

Lao, Y., Dong, Y., Shi, Y., Wang, Y., Xu, S., Xue, J. and Zhang, X. Evaluation of drought tolerance in maize inbred lines selected from the Shaan A group and Shaan B group. Agriculture. (2022). 12(11). https://doi.org/10.3390/agriculture12010011

Moosavi, S.S., Samadi, B.Y., Naghavi, M.R., Zali, A.A., Dashti, H. and Pourshahbazi, A. Introduction of new indices to identify relative drought tolerance and resistance in wheat cultivars. Desert. (2008). 12, 165-178.

Mwale, S.E., Ochwo-Ssemakula, M., Sadik, K., Achola, E., Okul, V., Gibson, P., Edema, R., Singini, W. and Rubaihayo, P. Response of cowpea genotypes to drought stress in Uganda. American Journal of Plant Sciences. (2017). 8(4), 720-733. https://doi.org/10.4236/ajps.2017.84050

Naik, P.M. and Murthy, H.N. The effects of gamma and ethyl methane sulphonate treatments on agronomical traits of niger (Guizotia abyssinica Cass.). African Journal of Biotechnology. (2009). 8(18), 4459-4464.

Nkomo, G.V., Sedibe, M.M. and Mofokeng, M.A. Production constraints and improvement strategies of cowpea (Vigna unguiculata L. Walp) genotypes for drought tolerance. International Journal of Agronomy. (2021). 2021, 1-9. https://doi.org/10.1155/2021/5536417

Owusu, E.Y., Karikari, B., Kusi, F., Haruna, M., Amoah, R.A., Amoah, R.A., Attamah, P., Adazebra, G., Sie, E.K. and Issahaku, M. Genetic variability, heritability, and correlation analysis among maturity and yield traits in cowpea (Vigna unguiculata L. Walp) in Northern Ghana. Heliyon. (2021). 7(9). https://doi.org/10.1016/j.heliyon.2021.e07890

Rosielle, A.A. and Hamblin, J. Theoretical aspects of selection for yield in stress and non-stress environments. Crop Science. (1981). 21, 943-946. https://doi.org/10.2135/cropsci1981.0011183X002100060033x

Rugare, T.J., Mabasa, S. and Tsekenedza, S. Response of cowpea (Vigna unguiculata L.) genotypes to witch weed (Alectra vogel

Rosielle, A.A. and Hamblin, J. Theoretical aspects of selection for yield in stress and non-stress environments. Crop Science. (1981). 21, 943-946. https://doi.org/10.2135/cropsci1981.0011183X002100060033x

Rugare, T.J., Mabasa, S. and Tsekenedza, S. Response of cowpea (Vigna unguiculata L.) genotypes to witch weed (Alectra vogelii Benth) infection. Asian Journal of Agriculture and Rural Development. (2013). 3(9), 667-673.Sánchez-Reinoso, A.D., Ligarreto-Moreno, G.A. and Restrepo-Díaz, H. Drought-tolerant common bush bean physiological parameters as indicators to identify susceptibility. HortScience. (2019). 54(11), 2091-2098. https://doi.org/10.21273/HORTSCI14436-19

Sanogo, S.A., Diallo, S., Nyadanu, D., Batieno, T.B.J. and Sawadogo, N. Selection of cowpea (Vigna unguiculata L.) Walp] genotypes for drought tolerance using selection indices. Agricultural Sciences. (2023). 14(03), 384-397. https://doi.org/10.4236/as.2023.143025

Santos, R., Carvalho, M., Rosa, E., Carnide, V. and Castro, I. Root and agro-morphological traits performance in cowpea under drought stress. Agronomy. (2020). 10, 1604. https://doi.org/10.3390/agronomy10101604

Stephens, L.C. Ethidium bromide-induced mutations from inflorescence cultures of Indiangrass. HortScience. 44(5), 1215-1218.

https://doi.org/10.21273/HORTSCI.44.5.1215

Songsri, P., Jogloy, S., Kesmala, T., Vorasoot, N., Akkasaeng, C., Patanothai, A. and Holbrook, C.C. Heritability of drought resistance traits and correlation of drought resistance and agronomic traits in peanut. Crop Science. (2008). 48(6), 2245-2253. https://doi.org/10.2135/cropsci2008.04.0228

Yahaya, D., Denwar, N. and Blair, M.W. Effects of moisture deficit on the yield of cowpea genotypes in the guinea savannah of Northern Ghana. Agricultural Sciences. (2019). 10(4), 577-595.

https://doi.org/10.4236/as.2019.104046

Yahaya, M. A., Shimelis, H., Nebié, B., Mashilo, J. and Pop, G. Response of African Sorghum Genotypes for Drought Tolerance under Variable Environments. Agronomy. (2023). 13(2), 1-24. https://doi.org/10.3390/agronomy13020557

Yuliasti, Y. and Reflinur, R. Evaluation of mungbean mutant lines to drought stress and their genetic relationships using SSR markers. Atom Indonesia. (2015). 41(3), 161-167. https://doi.org/10.17146/aij.2015.412

Downloads

Published

2025-08-08
CITATION
DOI: 10.56946/jspae.v4i2.605

How to Cite

Ajayi, A. T., Momoh, M. E., Oladipo, O. E., Dada, O. O., & Amoo, A. A. (2025). Ethidium Bromide-Induced Genetic Variability and Drought Tolerance in Cowpea (Vigna unguiculata L. Walp.) Under Field Conditions. Journal of Soil, Plant and Environment, 4(2), 18–44. https://doi.org/10.56946/jspae.v4i2.605

Issue

Section

Article