Interactive Effects of Nitrogen Fertilization and Harvest Age on the Nutritional Composition of Brachiaria ruziziensis

Authors

  • Sobande Olorunsogo Ariyo Federal Ministry of Agriculture and Rural Development, FCT, Abuja, Nigeria.
  • Amisu Ahmed Adeyemi Department of Pasture and Range Management, Federal University of Agriculture, Abeokuta, Nigeria. https://orcid.org/0000-0003-3860-1920
  • Adeoye Samson Adewale Department of Pasture and Range Management, Federal University of Agriculture, Abeokuta, Nigeria.
  • Olanite Jimoh Alao Department of Pasture and Range Management, Federal University of Agriculture, Abeokuta, Nigeria.
  • Ojo Victoria Olubunmi Aderemi Federal Ministry of Agriculture and Rural Development, FCT, Abuja, Nigeria.
  • Adebowale Abiola Sadiat Federal Ministry of Agriculture and Rural Development, FCT, Abuja, Nigeria.
  • Odebode Tomisin Esther Department of Pasture and Range Management, Federal University of Agriculture, Abeokuta, Nigeria.

DOI:

https://doi.org/10.56946/jspae.v4i2.661

Keywords:

Brachiaria ruziziensis, spacing, weeks after planting, fertilizer rates, in-vitro gas production, post-incubation parameters

Abstract

High-quality forage is vital for livestock productivity, but farmers in Nigeria often face challenges due to inconsistent fertilizer use and poor harvesting practices. This study evaluates the effects of nitrogen fertilizer rates and harvest age on the nutritive value of Brachiaria ruziziensis to enhance forage quality and support sustainable livestock nutrition. A 3 × 2 factorial design was used, testing three fertilizer rates (0, 120, and 240 kg N ha-1 as NPK 15:15:15) and two harvest ages (8 and 10 weeks after planting), resulting in six treatments. Proximate composition, fiber fractions, forage quality indices, mineral content, in vitro gas production, and post-incubation parameters were analyzed using standard laboratory methods. Both fertilizer rate and harvest age significantly (P < 0.05) influenced dry matter (DM), crude fiber (CF), crude protein (CP), ether extract (EE), ash, non-fiber carbohydrates (NFC), and metabolizable energy (ME). Fiber components, including acid detergent fiber (ADF), hemicellulose, and cellulose, were also affected. Forage quality indices such as organic matter (OM), carbohydrate content (CHO), dry matter digestibility (DMD), dry matter intake (DMI), relative feed value (RFV), cell content (CC), total digestible nutrients (TDN), and net energies for intake, gain, maintenance, and digestible energy showed significant improvements with increased fertilizer rates and earlier harvest. Mineral contents—sodium (Na), calcium (Ca), phosphorus (P), potassium (K), manganese (Mn), iron (Fe), and copper (Cu)—varied significantly with treatments. In vitro gas production and post-incubation parameters also showed significant differences. The study concludes that applying NPK 15:15:15 at 120 kg N ha¹ and harvesting at 8 weeks after planting optimizes biomass yield and improves proximate, fiber, mineral content, and forage quality, making it a cost-effective and sustainable approach for pasture management in Nigeria.

References

Adamczyk, B., Smolander, A., Kitunen, V., & Godlewski, M. (2010). Proteins as nitrogen source for plants: A short story about exudation of proteases by plant roots. Plant Signaling & Behavior, 5(7), 817. https://doi.org/10.4161/psb.5.7.11699

Aguiar, M., Auad, A. M., Fonseca, G., & Leite, M. V. (2014). Brachiaria ruziziensis responses to different fertilization forces and the attack of Mahanarva spectabilis (Hemiptera: Cercopidae) nymphs and adults. The Scientific World Journal, 2014. https://doi.org/10.1155/2014/543813

Akinyode, J. I., Dele, P. A., Akinyemi, B. T., & Ojo, V. O. A. (2021). Effect of fertilizer rate and age at harvest on the growth and dry matter yield of Brachiaria ruziziensis. The Pacific Journal of Science and Technology, 22(1). https://www.akamai.university/uploads/1/2/7/7/127725089/pjst22_1_170.pdf

AOAC. (2002). Official methods of analysis (16th edition). Association of Official Analytical Chemists.

Batista, K., Giacomini, A. A., Gerdes, L., de Mattos, W. T., Colozza, M. T., & Otsuk, I. P. (2014). Influence of nitrogen on the production characteristics of ruzi grass. African Journal of Agricultural Research, 9(5), 533-538. http://dx.doi.org/10.5897/AJAR2013.7302

Costa, N. de L., Magalhaes, J. A., Bendahan, A. B., Rodrigues, A. N. A.; Rodrigues, B. H. N., & Santos, F. J. de S. (2024). Forage yield and morphogenesis of Brachiaria ruziziensis under nitrogen levels. Research, Society and Development, 9(1). https://doi.org/10.33448/rsd-v9i1.1499

Duncan, D. (1955). Multiple range and multiple F tests. Biometrics, 11(1), 1-42. https://doi.org/10.2307/3001478

Fritz, J. S., & Schenk, G. H. (1979). Quantitative analytical chemistry (4th ed.). Allyn and Bacon

Getachew, G., De Peters, E. J., & Robinson, P. H. (2004). In vitro gas production provides an effective method for assessing ruminant feeds. California Agriculture, 58(1). https://doi.org/10.3733/ca.v058n01p54

Hasanuzzaman, M., Bhuyan, M. B., Zulfiqar, F., Raza, A., Mohsin, S. M., Mahmud, J. A., Fujita, M., & Fotopoulos, V. (2020). Reactive Oxygen species and antioxidant defense in plants under abiotic stress: Revisiting the crucial role of a universal defense regulator. Antioxidants, 9(8), 681. https://doi.org/10.3390/antiox9080681

Hemati, A., Nazari, M., Asgari Lajayer, B., Smith, D. L., & Astatkie, T. (2022). Lignocellulose in plant cell walls and their potential biological degradation. Folia Microbiologica, 67(5), 671-681. https://doi.org/10.1007/s12223-022-00974-5

Holub, P., Klem, K., Tůma, I., Vavříková, J., Surá, K., Veselá, B., Urban, O., & Záhora, J. (2020). Application of organic carbon affects mineral nitrogen uptake by winter wheat and leaching tin subsoil: Proximal sensing as a tool for agronomic practice. Science of the Total Environment, 717, 137058. https://doi.org/10.1016/j.scitotenv.2020.137058

Izydorczyk, G., Skrzypczak, D., Mironiuk, M., Mikula, K., Samoraj, M., Gil, F., Taf, R., Moustakas, K., & Chojnacka, K. (2024). Lignocellulosic biomass fertilizers: Production, characterization, and agri-applications. Science of The Total Environment, 923(171343). https://doi.org/10.1016/j.scitotenv.2024.171343

Kamalak A., Canbolat O., Gurbuz Y., Erol A. & Ozay O. (2005). Effect of maturity on the chemical composition, in vitro and in situ dry matter degradation of tumbleweed hay (Gundelia tournefortii L.). Small Ruminant Research, 58(2), 149-156. https://doi.org/10.1016/j.smallrumres.2004.09.011

Liu, J., Kim, J. I., Cusumano, J. C., Chapple, C., Venugopalan, N., Fischetti, R. F., & Makowski, L. (2016). The impact of alterations in lignin deposition on cellulose organization of the plant cell wall. Biotechnology for Biofuels, 9(126). https://doi.org/10.1186/s13068-016-0540-z

Menke, K.H., & Steingass, H. (1988). Estimation of the energetic feed value obtained from chemical analysis and gas production using rumen fluid. Animal Research Development, 7-55.

Murthy, A. H. C., Nair, A., Kalaivanan, D., Anjanappa, M., & Shankara, S. (2020). Effect of NPK fertigation on post-harvest soil nutrient status, nutrient uptake, and yield of hybrid ridge gourd [Luffa acutangula (L.) Roxb] Arka Vikram. international Journal of Chemical Studies, 8(4), 3064-3069. https://doi.org/10.22271/chemi.2020.v8.i4ak.10117

Njoku, E. A., Ukwu, U. N., Anozie, C. C., Baiyeri, K. P., & Echezona, B. C. (2024). Effect of variety, Fertilizer combinations, and harvest age on biochemical qualities of Carrot (Daucus carota L.) in a tropical environment. Tropical Journal of Natural Product Research (TJNPR), 8(5), 7315-7320. https://doi.org/10.26538/tjnpr/v8i5.38

Sobande, O. A., Olanite, J. A., Ojo, V.O. A., Amisu, A. A., Adeoye, S. A., & Odebode, T. E. (2024). Chemical composition of Brachiaria ruziziensis as influenced by fertilizer rate, plant spacing, and harvest age. Proc. 49th Conference Nigerian Society for Animal Production, 1689-1692. https://njap.org.ng/index.php/njap/article/view/7273

Suvendran, S., Acevedo, M. F., Smithers, B., Walker, S. J., & Xu, P. (2024). Soil fertility and plant growth enhancement through compost treatments under varied irrigation conditions. Agriculture, 15(7), 734. https://doi.org/10.3390/agriculture15070734

Van Soest, P. J. (1994). Nutritional ecology of ruminants (2nd edition). Cornell University Press. https://doi.org/10.7591/9781501732355

Wang, H., Zhang, G., Yang, S., Ma, M., Fang, Y., Hou, H., Lei, K., & Yin, J. (2025). Deep fertilization enhances crude protein content in forage maize by modulating key enzymes of protein synthesis across plant organs in semi-arid regions of China. Biology, 14(5), 535. https://doi.org/10.3390/biology14050535

Weather and Climate. (2021). Average humidity in Abeokuta, Nigeria. https://weatherand-climate.com/average-monthly-Humidity-perc,abeokuta-ng

Zayed, O., Hewedy, O. A., Abdelmoteleb, A., Ali, M., Youssef, M. S., Roumia, A. F., Seymour, D., & Yuan, C. (2023). Nitrogen journey in plants: From uptake to metabolism, stress response, and microbe interaction. Biomolecules, 13(10), 1443. https://doi.org/10.3390/biom13101443

Zhang, K., Greenwood, D. J., White, P. J., & Burns, I. G. (2007). A dynamic model for the combined effects of N, P, and K fertilizers on yield and mineral composition; description and experimental test. Plant Soil, 298, 81-98. https://doi.org/10.1007/s11104-007-9342-1

Downloads

Published

2025-07-18
CITATION
DOI: 10.56946/jspae.v4i2.661

How to Cite

Ariyo, S. O., Adeyemi, A. A., Adewale, A. S., Alao, O. J., Aderemi, O. V. O., Sadiat, A. A., & Esther, O. T. (2025). Interactive Effects of Nitrogen Fertilization and Harvest Age on the Nutritional Composition of Brachiaria ruziziensis. Journal of Soil, Plant and Environment, 4(2), 1–17. https://doi.org/10.56946/jspae.v4i2.661

Issue

Section

Article